Issue
Eur. Phys. J. Appl. Phys.
Volume 100, 2025
Special Issue on ‘Imaging, Diffraction, and Spectroscopy on the micro/nanoscale (EMC 2024)’, edited by Jakob Birkedal Wagner and Randi Holmestad
Article Number 9
Number of page(s) 10
DOI https://doi.org/10.1051/epjap/2025007
Published online 20 March 2025
  1. C.W. Oatley, The early history of the scanning electron microscope, J. Appl. Phys. 53, R1 (1982) [Google Scholar]
  2. L. Reimer, Scanning Electron Microscopy: Physics of Image Formation and Microanalysis (Springer, Berlin, Heidelberg, 1998), Vol. 45 [Google Scholar]
  3. I. Volotsenko et al., Secondary electron doping contrast: theory based on scanning electron microscope and Kelvin probe force microscopy measurements, J. Appl. Phys. 107, 014510 (2010) [Google Scholar]
  4. R. Le Bihan, Study of ferroelectric and ferroelastic domain structures by scanning electron microscopy, Ferroelectrics 97, 19 (1989) [Google Scholar]
  5. J. Li et al., Scanning secondary-electron microscopy on ferroelectric domains and domain walls in YMnO3, Appl. Phys. Lett. 100, 152903 (2012) [Google Scholar]
  6. N. Dellby, O.L. Krivanek, P.D. Nellist, P.E. Batson, A.R. Lupini, Progress in aberration-corrected scanning transmission electron microscopy, J. Electron Microsc. 50, 177 (2001) [Google Scholar]
  7. P.E. Batson, N. Dellby, O.L. Krivanek, Sub-ångstrom resolution using aberration corrected electron optics, Nature 418, 617 (2002) [Google Scholar]
  8. L.M. Brown, P.E. Batson, N. Dellby, O.L. Krivanek, Brief history of the Cambridge STEM aberration correction project and its progeny, Ultramicroscopy 157, 88 (2015) [CrossRef] [PubMed] [Google Scholar]
  9. Y. Zhu, H. Inada, K. Nakamura, J. Wall, Imaging single atoms using secondary electrons with an aberration-corrected electron microscope, Nat. Mater. 8, 808 (2009) [Google Scholar]
  10. J. Ciston et al., Surface determination through atomically resolved secondary-electron imaging, Nat. Commun. 6, 7358 (2015) [CrossRef] [Google Scholar]
  11. S. Hwang et al., Secondary-electron imaging of bulk crystalline specimens in an aberration corrected STEM, Ultramicroscopy 261, 113967 (2024) [CrossRef] [PubMed] [Google Scholar]
  12. H.G. Brown, A.J. D'Alfonso, L.J. Allen, Secondary electron imaging at atomic resolution using a focused coherent electron probe, Phys. Rev. B 87, 054102 (2013) [Google Scholar]
  13. R.F. Egerton, Y. Zhu, Spatial resolution in secondary-electron microscopy, J. Microsc. 72, 66 (2023) [Google Scholar]
  14. O.L. Krivanek et al., Gentle STEM: ADF imaging and EELS at low primary energies, Ultramicroscopy 110, 935 (2010) [CrossRef] [Google Scholar]
  15. O.L. Krivanek et al., Atom-by-atom structural and chemical analysis by annular dark-field electron microscopy (supporting materials), Nature 464, 571 (2010) [Google Scholar]
  16. R.F. Egerton, Electron Energy-Loss Spectroscopy in the Electron Microscope (Springer US, Boston, MA, 2011) [Google Scholar]
  17. R.F. Egerton, Limits to the spatial, energy and momentum resolution of electron energy-loss spectroscopy, Ultramicroscopy 107, 575 (2007) [CrossRef] [PubMed] [Google Scholar]
  18. R.F. Egerton, P. Li, M. Malac, Radiation damage in the TEM and SEM, Micron 35, 399 (2004) [CrossRef] [PubMed] [Google Scholar]
  19. M.T. Hotz et al., Atomic resolution SE imaging in a 30-200 keV Aberration-corrected UHV STEM, Microsc. Microanal. 29, 2064 (2023) [Google Scholar]
  20. J. Martis et al., STEM developments: a versatile light injector/collector, fast 4D-STEM, and high energy resolution EELS without compromising beam current, Microsc. Microanal. 30, 2182 (2024) [Google Scholar]
  21. O.L. Krivanek, N. Dellby, M.F. Murfitt, Aberration Correction in Electron Microscopy, in Handbook of Charged Particle Optics, edited by J. Orloff, 2nd edn. (CRC Press, Boca Raton, 2009), p. 601 [Google Scholar]
  22. N. Dellby et al., Tuning high order geometric aberrations in quadrupole-octupole correctors, Microsc. Microanal. 20, 928 (2014) [Google Scholar]
  23. O.L. Krivanek et al., Vibrational spectroscopy in the electron microscope, Nature 514, 209 (2014) [CrossRef] [PubMed] [Google Scholar]
  24. N. Dellby et al., Ultra-high resolution EELS analysis and STEM imaging at 20 keV, Microsc. Microanal. 29, 626 (2023) [Google Scholar]
  25. T. Everhart, R.F.M. Thornley, Wide-band detector for micro-microampere low-energy electron currents, J. Sci. Instrum. 37, 246 (1960) [Google Scholar]
  26. B. Plotkin-Swing et al., 100,000 diffraction patterns per second with live processing for 4D-STEM, Microsc. Microanal. 28, 422 (2022) [Google Scholar]
  27. B. Plotkin-Swing et al., Hybrid pixel direct detector for electron energy loss spectroscopy, Ultramicroscopy 217, 113067 (2020) [CrossRef] [PubMed] [Google Scholar]
  28. S. Das et al., Transistors based on two-dimensional materials for future integrated circuits, Nat. Electron. 4, 786 (2021) [Google Scholar]
  29. M.C. Lemme, D. Akinwande, C. Huyghebaert, C. Stampfer, 2D materials for future heterogeneous electronics, Nat. Commun. 13, 1392 (2022) [Google Scholar]
  30. Y. Wang et al., Catalysis with two-dimensional materials confining single atoms: concept, design, and applications, Chem. Rev. 119, 1806 (2019) [Google Scholar]
  31. M. Turunen, M. Brotons-Gisbert, Y. Dai et al., Quantum photonics with layered 2D materials, Nat. Rev. Phys. 4, 219 (2022) [Google Scholar]
  32. J. Zhang et al., Vanadium-doped monolayer MoS2 with tunable optical properties for field-effect transistors, ACS Appl. Nano Mater. 4, 769 (2021) [CrossRef] [Google Scholar]
  33. Q. Chen et al., Ultralong 1D vacancy channels for rapid atomic migration during 2D void formation in monolayer MoS2, ACS Nano 12, 7721 (2018) [CrossRef] [PubMed] [Google Scholar]
  34. K. Müller et al., Atomic electric fields revealed by a quantum mechanical approach to electron picodiffraction, Nat. Commun. 5, 5653 (2014) [Google Scholar]
  35. H. Mullejans, A.L. Bleloch, A. Howie, M. Tomita, Secondary electron coincidence detection and time of flight spectroscopy, Ultramicroscopy 52, 360 (1993) [CrossRef] [Google Scholar]
  36. M.D. Kapetanakis et al., Low-loss electron energy loss spectroscopy: an atomic-resolution complement to optical spectroscopies and application to grapheme, Phys. Rev. B 92, 125147 (2015) [Google Scholar]
  37. B. Plotkin-Swing et al., Atomic resolution secondary electron imaging of top and bottom surfaces, Microsc. Microanal. 30, 1480 (2024) [Google Scholar]
  38. K. Saitoh, K. Tamaki, Depth sensitivity of atomic resolution secondary electron imaging, in 17th European Microscopy Congress (EMC 2024) (BIO Web of Conferences, 2024). https://doi.org/10.1051/bioconf/202412904028 [Google Scholar]
  39. K. Saitoh et al., Surface sensitivity of atomic-resolution secondary electron imaging, Microscopy 74, 28 (2025). https://doi.org/10.1093/jmicro/dfae041 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.