Issue |
Eur. Phys. J. Appl. Phys.
Volume 100, 2025
Special Issue on ‘Imaging, Diffraction, and Spectroscopy on the micro/nanoscale (EMC 2024)’, edited by Jakob Birkedal Wagner and Randi Holmestad
|
|
---|---|---|
Article Number | 8 | |
Number of page(s) | 16 | |
DOI | https://doi.org/10.1051/epjap/2025005 | |
Published online | 17 March 2025 |
- K. Heise, G. Delepierre, A.W.T. King, M.A. Kostiainen, J. Zoppe, C. Weder, E. Kontturi, Chemical modification of reducing end‐groups in cellulose nanocrystals, Angew. Chem. Int. Ed. 60, 66 (2021) [CrossRef] [PubMed] [Google Scholar]
- T. Li, C. Chen, A.H. Brozena, J.Y. Zhu, L. Xu, C. Driemeier, J. Dai, O.J. Rojas, A. Isogai, L. Wågberg, L. Hu, Developing fibrillated cellulose as a sustainable technological material, Nature 590, 47 (2021) [CrossRef] [PubMed] [Google Scholar]
- T. Saito, A. Isogai, TEMPO-mediated oxidation of native cellulose. the effect of oxidation conditions on chemical and crystal structures of the water-insoluble fractions, Biomacromolecules 5, 1983 (2004) [CrossRef] [PubMed] [Google Scholar]
- L.S. Sobhanadhas, L. Kesavan, P. Fardim, Topochemical engineering of cellulose-based functional materials, Langmuir 34, 9857 (2018) [CrossRef] [PubMed] [Google Scholar]
- Y. Habibi, L.A. Lucia, O.J. Rojas, Cellulose nanocrystals: chemistry, self-assembly, and applications, Chem. Rev. 110, 3479 (2010) [CrossRef] [PubMed] [Google Scholar]
- A. Isogai, Y. Zhou, Diverse nanocelluloses prepared from TEMPO-oxidized wood cellulose fibers: nanonetworks, nanofibers, and nanocrystals, Curr. Opin. Solid State Mater. Sci. 23, 101 (2019) [CrossRef] [Google Scholar]
- A. Isogai, T. Hänninen, S. Fujisawa, T. Saito, Review: Catalytic oxidation of cellulose with nitroxyl radicals under aqueous conditions, Prog. Polym. Sci. 86, 122 (2018) [CrossRef] [Google Scholar]
- A. Isogai, T. Saito, H. Fukuzumi, TEMPO-oxidized cellulose nanofibers, Nanoscale 3, 71 (2011) [CrossRef] [PubMed] [Google Scholar]
- A.W. Carpenter, C.-F. de Lannoy, M.R. Wiesner, Cellulose nanomaterials in water treatment technologies, Environ. Sci. Technol. 49, 5277 (2015) [CrossRef] [PubMed] [Google Scholar]
- I. Capron, O.J. Rojas, R. Bordes, Behavior of nanocelluloses at interfaces, Curr. Opin. Colloid Interface Sci. 29, 83 (2017) [CrossRef] [Google Scholar]
- O.M. Vanderfleet, E.D. Cranston, Production routes to tailor the performance of cellulose nanocrystals, Nat. Rev. Mater. 6, 124 (2021) [Google Scholar]
- W. Ducker, P. Claesson, Recent progress in surface forces: application to complex systems, biology, and wetting, Curr. Opin. Colloid Interface Sci. 47, A1 (2020) [CrossRef] [Google Scholar]
- R. Zhang, Y. Liu, M. He, Y. Su, X. Zhao, M. Elimelech, Z. Jiang, Antifouling membranes for sustainable water purification: strategies and mechanisms, Chem. Soc. Rev. 45, 5888 (2016) [CrossRef] [PubMed] [Google Scholar]
- M. Österberg, K.A. Henn, M. Farooq, J.J. Valle-Delgado, Biobased nanomaterials the role of interfacial interactions for advanced materials, Chem. Rev. 123, 2200 (2023) [Google Scholar]
- L. Solhi, V. Guccini, K. Heise, I. Solala, E. Niinivaara, W. Xu, K. Mihhels, M. Kröger, Z. Meng, J. Wohlert, H. Tao, E.D. Cranston, E. Kontturi, Understanding nanocellulose-water interactions: turning a detriment into an asset, Chem. Rev. 123, 1925 (2023) [CrossRef] [PubMed] [Google Scholar]
- T. Benselfelt, N. Kummer, M. Nordenström, A.B. Fall, G. Nyström, L. Wågberg, The colloidal properties of nanocellulose, ChemSusChem 16, e202201955 (2023) [CrossRef] [Google Scholar]
- C. Salas, T. Nypelö, C. Rodriguez-Abreu, C. Carrillo, O.J. Rojas, Nanocellulose properties and applications in colloids and interfaces, Curr. Opin. Colloid Interface Sci. 19, 383 (2014) [CrossRef] [Google Scholar]
- M. Krieg, G. Fläschner, D. Alsteens, B.M. Gaub, W.H. Roos, G.J.L. Wuite, H.E. Gaub, C. Gerber, Y.F. Dufrêne, D.J. Müller, Atomic force microscopy-based mechanobiology, Nat. Rev. Phys. 1, 41 (2018) [CrossRef] [Google Scholar]
- B. Pittenger, N. Erina, C. Su, Mechanical property mapping at the nanoscale using peakforce QNM scanning probe technique nanomechanical analysis of high performance, Materials, 203, 31 (2014) [PubMed] [Google Scholar]
- J. Li, I. Pylypchuk, D.P. Johansson, V.G. Kessler, G.A. Seisenbaeva, M. Langton, Self-assembly of plant protein fibrils interacting with superparamagnetic iron oxide nanoparticles, Sci. Rep. 9, 8939 (2019) [CrossRef] [Google Scholar]
- K. Reimhult, K. Petersson, A. Krozer, QCM-D analysis of the performance of blocking agents on gold and polystyrene surfaces, Langmuir 24, 8695 (2008) [CrossRef] [PubMed] [Google Scholar]
- A. Kusumo, L. Bombalski, Q. Lin, K. Matyjaszewski, J.W. Schneider, R.D. Tilton, High capacity, charge-selective protein uptake by polyelectrolyte brushes, Langmuir 23, 4448 (2007) [CrossRef] [PubMed] [Google Scholar]
- S. Demanèche, J-P. Chapel, L.J. Monrozier, H. Quiquampoix, Dissimilar pH-dependent adsorption features of bovine serum albumin and α-chymotrypsin on mica probed by AFM, Colloids Surf. B: Biointerfaces 70, 226 (2009) [CrossRef] [Google Scholar]
- T. Pettersson, A. Naderi, R. Makuška, P.M. Claesson, Lubrication properties of bottle-brush polyelectrolytes: an AFM study on the effect of side chain and charge density, Langmuir 24, 3336 (2008) [CrossRef] [PubMed] [Google Scholar]
- T. Leskinen, J. Witos, J.J. Valle-Delgado, K. Lintinen, M. Kostiainen, S.K. Wiedmer, M. Österberg, M.-L. Mattinen, Adsorption of proteins on colloidal lignin particles for advanced biomaterials, Biomacromolecules 18, 2767 (2017) [CrossRef] [PubMed] [Google Scholar]
- D. Ménard, L. Blaschek, K. Kriechbaum, C.C. Lee, H. Serk, C. Zhu, A. Lyubartsev, Z. Nuoendagula, L. Bergström, A. Mathew, S. Kajita, E. Pesquet, Plant biomechanics and resilience to environmental changes are controlled by specific lignin chemistries in each vascular cell type and morphotype, Plant Cell 34, 4877 (2022) [CrossRef] [PubMed] [Google Scholar]
- A. Aguilar-Sánchez, J. Li, B. Jalvo, E. Pesquet, A.P. Mathew, Understanding the effect of different nanocelluloses on the proliferation and biomechanical properties of E. coli cell reports, Phys. Sci. 5, 102226 (2024) [Google Scholar]
- D. Georgouvelas, B. Jalvo, L. Valencia, W. Papawassiliou, A.J. Pell, U. Edlund, A.P. Mathew, Residual lignin and zwitterionic polymer grafts on cellulose nanocrystals for antifouling and antibacterial applications, ACS Appl. Polym. Mater. 2, 3060 (2020) [CrossRef] [Google Scholar]
- A. Aguilar-Sanchez, B. Jalvo, A. Mautner, V. Rissanen, K.S. Kontturi, H.N. Abdelhamid, T. Tammelin, A.P. Mathew, Charged ultrafiltration membranes based on TEMPO-oxidized cellulose nanofibrils/poly(vinyl alcohol) antifouling coating, RSC Adv. 11, 6859 (2021) [CrossRef] [Google Scholar]
- A. Aguilar-Sanchez, B. Jalvo, A. Mautner, S. Nameer, T. Pöhler, T. Tammelin, A.P. Mathew, Waterborne nanocellulose coatings for improving the antifouling and antibacterial properties of polyethersulfone membranes, J. Memb. Sci. 620, 118842 (2021) [CrossRef] [Google Scholar]
- H. Orelma, I. Filpponen, L.-S. Johansson, J. Laine, O.J. Rojas, Modification of cellulose films by adsorption of CMC and chitosan for controlled attachment of biomolecules, Biomacromolecules 12, 4311 (2011) [CrossRef] [PubMed] [Google Scholar]
- H.K. Christenson, P.M. Claesson, Direct measurements of the force between hydrophobic surfaces in water, Adv. Colloid Interface Sci. 91, 391 (2001) [CrossRef] [Google Scholar]
- M. Österberg, J.J. Valle-Delgado, Surface forces in lignocellulosic systems, Curr. Opin. Colloid Interface Sci. 27, 33 (2017) [CrossRef] [Google Scholar]
- S.M. Acuña, J.M. Bastías, P.G. Toledo, Direct measurement of interaction forces between bovine serum albumin and poly(ethylene oxide) in water and electrolyte solutions ed H-A Tajmir-Riahi, PLoS One 12, e0173910 (2017) [CrossRef] [PubMed] [Google Scholar]
- P.M. Claesson, E. Blomberg, J.C. Fröberg, T. Nylander, T. Arnebrant, Protein interactions at solid surfaces, Adv. Colloid Interface Sci. 57, 161 (1995) [CrossRef] [Google Scholar]
- H.-J. Butt, B. Cappella, M. Kappl, Force measurements with the atomic force microscope: Technique, interpretation and applications, Surf. Sci. Rep. 59, 1 (2005) [CrossRef] [Google Scholar]
- H. Khalili, S. Monti, E. Pesquet, A. Jaworski, S. Lombardo, A.P. Mathew, Nanocellulose-bovine serum albumin interactions in an aqueous medium: investigations using in situ nanocolloidal probe microscopy and reactive molecular dynamics simulations, Biomacromolecules 25, 3703 (2024) [CrossRef] [PubMed] [Google Scholar]
- P.M. Claesson, T. Ederth, V. Bergeron, M.W. Rutland, Techniques for measuring surface forces, Adv. Colloid Interface Sci. 67, 119 (1996) [CrossRef] [Google Scholar]
- C.M. Nelson, B. Xiao, S.A. Wickström, Y.F. Dufrêne, D.J. Cosgrove, C.-P. Heisenberg, S. Dupont, A.E. Shyer, A.R. Rodrigues, X. Trepat, A. Diz-Muñoz, Mechanobiology: shaping the future of cellular form and function, Cell 187, 2652 (2024) [CrossRef] [PubMed] [Google Scholar]
- D. Georgouvelas, H.N. Abdelhamid, J. Li, U. Edlund, A.P. Mathew, All-cellulose functional membranes for water treatment: adsorption of metal ions and catalytic decolorization of dyes, Carbohydr. Polym. 264, 118044 (2021) [Google Scholar]
- L. Valencia, V. Arumughan, B. Jalvo, H.J. Maria, S. Thomas, A.P. Mathew, Nanolignocellulose extracted from environmentally undesired Prosopis juliflora, ACS Omega 4, 4330 (2019) [CrossRef] [Google Scholar]
- J. Li, A.P. Mathew, Effect of decoration route on the nanomechanical, adhesive, and force response of nanocelluloses—an in situ force spectroscopy study K.A. ed, Khalil, PLoS One 18, e0279919 (2023) [CrossRef] [Google Scholar]
- A. Chen, V.T. Moy, Single-Molecule Force Measurements, Methods in Cell Biol. 68, 301 (2002) [Google Scholar]
- J. Auernhammer, A.K. Bell, M. Schulze, Y. Du, L. Stühn, S. Wendenburg, I. Pause, M. Biesalski, W. Ensinger, R.W. Stark, Nanomechanical characterisation of a water-repelling terpolymer coating of cellulosic fibres, Cellulose 28, 2149 (2021) [CrossRef] [Google Scholar]
- H. Stadler, M. Mondon, C. Ziegler, Protein adsorption on surfaces: dynamic contact-angle (DCA) and quartz-crystal microbalance (QCM) measurements, Anal. Bioanal. Chem. 375, 53 (2003) [CrossRef] [PubMed] [Google Scholar]
- M.E.R. Shanahan, A simple analysis of local wetting hysteresis on a Wilhelmy plate, Surf. Interface Anal. 17, 489 (1991) [CrossRef] [Google Scholar]
- H.-J. Butt, J. Liu, K. Koynov, B. Straub, C. Hinduja, I. Roismann, R. Berger, X. Li, D. Vollmer, W. Steffen, M. Kappl, Contact angle hysteresis, Curr. Opin. Colloid Interface Sci. 59, 101574 (2022) [CrossRef] [Google Scholar]
- R.E. Johnson, R.H. Dettre, Contact angle hysteresis. III. Study of an idealized heterogeneous surface, J. Phys. Chem. 68, 1744 (1964) [Google Scholar]
- R.H. Dettre, R.E. Johnson, Contact angle hysteresis. IV. Contact angle measurements on heterogeneous surfaces, J. Phys. Chem. 69, 1507 (1965) [CrossRef] [Google Scholar]
- P. Kumar, D.J. Harvie, Energy dissipation during Wenzel wetting via roughness scale interface dynamics, Langmuir 40, 16190 (2024) [Google Scholar]
- A. Salis, M. Boström, L. Medda, F. Cugia, B. Barse, D.F. Parsons, B.W. Ninham, M. Monduzzi, Measurements and theoretical interpretation of points of zero charge/potential of BSA protein, Langmuir 27, 11597 (2011) [CrossRef] [PubMed] [Google Scholar]
- G. Gillies, C.A. Prestidge, P. Attard, Determination of the separation in colloid probe atomic force microscopy of deformable bodies, Langmuir 17, 7955 (2001) [CrossRef] [Google Scholar]
- S. Zauscher, D.J. Klingenberg, Normal forces between cellulose surfaces measured with colloidal probe microscopy, J. Colloid Interface Sci. 229, 497 (2000) [CrossRef] [Google Scholar]
- P. Liu, B. Garrido, K. Oksman, A.P. Mathew, Adsorption isotherms and mechanisms of Cu( <scp>ii</scp>) sorption onto TEMPO-mediated oxidized cellulose nanofibers, RSC Adv. 6, 107759 (2016) [CrossRef] [Google Scholar]
- R.-M.P. Karlsson, P.T. Larsson, T. Pettersson, L. Wågberg, Swelling of cellulose-based fibrillar and polymeric networks driven by ion-induced osmotic pressure, Langmuir 36, 12261 (2020) [CrossRef] [PubMed] [Google Scholar]
- J.J. Valle-Delgado, J.A. var Molina-Bolí, F. Galisteo-González, M.J. Gálvez-Ruiz, A. Feiler, M. Rutland, Interactions between bovine serum albumin layers adsorbed on different substrates measured with an atomic force microscope, Phys. Chem. Chem. Phys. 6, 1482 (2004) [CrossRef] [Google Scholar]
- J.J. Valle-Delgado, J.A. var Molina-Bolí, F. Galisteo-González, M.J. Gálvez-Ruiz, A. Feiler, M.W. Rutland, Interaction forces between BSA layers adsorbed on silica surfaces measured with an atomic force microscope, J. Phys. Chem. B 108, 5365 (2004) [CrossRef] [Google Scholar]
- W.R. Bowen, N. Hilal, R.W. Lovitt, C.J. Wright, Direct measurement of interactions between adsorbed protein layers using an atomic force microscope, J. Colloid Interface Sci. 197, 348 (1998) [CrossRef] [Google Scholar]
- G. Olanya, E. Thormann, I. Varga, R. Makuška, P.M. Claesson, Protein interactions with bottle-brush polymer layers: Effect of side chain and charge density ratio probed by QCM-D and AFM, J. Colloid Interface Sci. 349, 265 (2010) [CrossRef] [Google Scholar]
- R.C. Advincula, W.J. Brittain, K.C. Caster, J. Rühe, Polymer Brushes: Synthesis, Characterization, Applications (Wiley, 2004) [CrossRef] [Google Scholar]
- J. Klein, P.F. Luckham, Long-range attractive forces between two mica surfaces in an aqueous polymer solution, Nature 308, 836 (1984) [CrossRef] [Google Scholar]
- J.N. Israelachvili, Intermolecular and Surface Forces (Elsevier, 2011) [Google Scholar]
- M. Österberg, J. Laine, P. Stenius, A. Kumpulainen, P.M. Claesson, Forces between Xylan-coated surfaces: effect of polymer charge density and background electrolyte, J. Colloid Interface Sci. 242, 59 (2001) [CrossRef] [Google Scholar]
- J. Lucenius, J.J. Valle-Delgado, K. Parikka, M. Österberg, Understanding hemicellulose-cellulose interactions in cellulose nanofibril-based composites, J. Colloid Interface Sci. 555, 104 (2019) [CrossRef] [Google Scholar]
- M. Holmberg, J. Berg, S. Stemme, L. Ödberg, J. Rasmusson, P. Claesson, Surface force studies of Langmuir-Blodgett cellulose films, J. Colloid Interface Sci. 186, 369 (1997) [CrossRef] [Google Scholar]
- M.E.R. Shanahan, Simple theory of “stick-slip” wetting hysteresis, Langmuir 11, 1041 (1995) [CrossRef] [Google Scholar]
- E. Dietrich, E.S. Kooij, X. Zhang, H.J. Zandvliet, D. Lohse, Stick-jump mode in surface droplet dissolution, Langmuir 31, 4696 (2015) [CrossRef] [PubMed] [Google Scholar]
- F. Wang, H. Wu, Molecular origin of contact line stick-slip motion during droplet evaporation, Sci. Rep. 5, 17521 (2015) [CrossRef] [Google Scholar]
- T. Saito, S. Kimura, Y. Nishiyama, A. Isogai, Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose, Biomacromolecules 8, 2485 (2007) [CrossRef] [PubMed] [Google Scholar]
- C. Jeppesen, Impact of polymer tether length on multiple ligand-receptor bond formation, Science 293, 465 (2001) [CrossRef] [PubMed] [Google Scholar]
- J. Liao, K.A. Pham, V. Breedveld, TEMPO-CNF suspensions in the viscoelastic regime: capturing the effect of morphology and surface charge with a rheological parameter, Cellulose 28, 813 (2021) [CrossRef] [Google Scholar]
- P.M. Claesson, E. Poptoshev, E. Blomberg, A. Dedinaite, Polyelectrolyte-mediated surface interactions, Adv. Colloid Interface Sci. 114-115, 173 (2005) [Google Scholar]
- J. Salmi, M. Österberg, P. Stenius, J. Laine, Surface forces between cellulose surfaces in cationic polyelectrolyte solutions: the effect of polymer molecular weight and charge density, Nord. Pulp Pap. Res. J. 22, 249 (2007) [CrossRef] [Google Scholar]
- D. Leckband, J. Israelachvili, Intermolecular forces in biology, Q. Rev. Biophys. 34, 105 (2001) [CrossRef] [PubMed] [Google Scholar]
- E.D. Cranston, D.G. Gray, M.W. Rutland, Direct surface force measurements of polyelectrolyte multilayer films containing nanocrystalline cellulose, Langmuir 26, 17190 (2010) [CrossRef] [PubMed] [Google Scholar]
- P.M. Claesson, M.A. Dahlgren, L. Eriksson, Forces between polyelectrolyte-coated surfaces: relations between surface interaction and floc properties, Colloids Surf. A 93, 293 (1994) [CrossRef] [Google Scholar]
- C. Qin, K. Clarke, K. Li, Interactive forces between lignin and cellulase as determined by atomic force microscopy, Biotechnol. Biofuels 7, 65 (2014) [CrossRef] [Google Scholar]
- A. Carambassis, M.W. Rutland, Interactions of cellulose surfaces: effect of electrolyte, Langmuir 15, 5584 (1999) [CrossRef] [Google Scholar]
- S.M. Notley, B. Pettersson, L. Wågberg, Direct measurement of attractive van der Waals' forces between regenerated cellulose surfaces in an aqueous environment, J. Am. Chem. Soc. 126, 13930 (2004) [CrossRef] [PubMed] [Google Scholar]
- J. Araki, Electrostatic or steric? Preparations and characterizations of well-dispersed systems containing rod-like nanowhiskers of crystalline polysaccharides, Soft Matter 9, 4125 (2013) [CrossRef] [Google Scholar]
- W. Norde, Adsorption of proteins from solution at the solid-liquid interface, Adv. Colloid Interface Sci. 25, 267 (1986) [CrossRef] [Google Scholar]
- A. Naderi, J. Iruthayaraj, T. Pettersson, R. Makuška, P.M. Claesson, Effect of polymer architecture on the adsorption properties of a nonionic polymer, Langmuir 24, 6676 (2008) [CrossRef] [PubMed] [Google Scholar]
- M. Ruths, H. Yoshizawa, L.J. Fetters, J.N. Israelachvili, Depletion attraction versus steric repulsion in a system of weakly adsorbing polymereffects of concentration and adsorption conditions, Macromolecules 29, 7193 (1996) [CrossRef] [Google Scholar]
- M. Österberg, The effect of a cationic polyelectrolyte on the forces between two cellulose surfaces and between one cellulose and one mineral surface, J. Colloid Interface Sci. 229, 620 (2000) [CrossRef] [Google Scholar]
- W.N. Everett, H.-J. Wu, S.G. Anekal, H.-J. Sue, M.A. Bevan, Diffusing colloidal probes of protein and synthetic macromolecule interactions, Biophys. J. 92, 1005 (2007) [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.