Issue |
Eur. Phys. J. Appl. Phys.
Volume 97, 2022
Special lssue on ‘EELS - Review over the last 50 years by Christian Colliex’
|
|
---|---|---|
Article Number | 38 | |
Number of page(s) | 47 | |
Section | Imaging, Microscopy and Spectroscopy | |
DOI | https://doi.org/10.1051/epjap/2022220012 | |
Published online | 24 June 2022 |
- J. Hillier, R.F. Baker, Microanalysis by means of electrons, J. Appl. Phys. 15, 663 (1944) [CrossRef] [Google Scholar]
- G. Ruthemann, Diskrete Energie verluste mittelschneller Elektronen beim Durchgang durch dünne Folien, Ann. Phys. 6, 113 (1948) [CrossRef] [Google Scholar]
- H. Boersch, J. Geiger, H. Hellwig, Steigerung der Auflösung bei der Elektronen-Energieanalyse, Phys. Lett. 3, 64 (1962) [CrossRef] [Google Scholar]
- R. Castaing, L. Henry, Filtrage magnétique des vitesses en microscopie électronique, C. R. Acad. Sci. Paris 255, 76 (1962) [Google Scholar]
- D.B. Wittry, R.P. Ferrier, V.E. Cosslett, Selected-area spectrometry in the transmission electron microscope, Br. J. Appl. Phys. D 2, 1767 (1969) [CrossRef] [Google Scholar]
- D.B. Wittry, An electron spectrometer for use in the transmission electron microscope, Br. J. Appl. Phys. D 2, 1757 (1969) [CrossRef] [Google Scholar]
- M. Isaacson, Interaction of 25 keV electrons with the nucleic acid bases, adenine, thymine and uracil. I. Outer shell electrons, J. Chem. Phys. 56, 1803 (1972) [CrossRef] [Google Scholar]
- M. Isaacson, Interaction of 25 keV electrons with the nucleic acid bases, adenine, thymine and uracil. II. Inner shell excitation and inelastic scattering cross section, J. Chem. Phys. 56, 1813 (1972) [CrossRef] [Google Scholar]
- A.V. Crewe, M. Isaacson, D. Johnson, A high resolution electron spectrometer for use in transmission scanning electron microscopy, Rev. Sci. Instrum. 42, 411 (1971) [CrossRef] [PubMed] [Google Scholar]
- C. Colliex, B. Jouffrey, Contribution à l’étude des pertes d’énergie dues à l’excitation de niveaux profonds, C. R. Acad. Sci. Paris B 270, 144 (1970) [Google Scholar]
- C. Colliex, B. Jouffrey, Images filtrées obtenues avec des électrons ayant subi des pertes d’énergie dues à l’excitation de niveaux profonds, C. R. Acad. Sci. Paris B 270, 673 (1970) [Google Scholar]
- C. Colliex, B. Jouffrey, Diffusion inélastique des électrons dans un solide par excitation de niveaux atomiques profonds. I - Spectres de pertes d’énergie, Philos. Mag. 25, 491 (1972) [CrossRef] [Google Scholar]
- R.F. Egerton, Inelastic scattering and energy filtering in the transmission electron microscope, Philos. Mag. 34, 49 (1976) [CrossRef] [Google Scholar]
- R.F. Egerton, Formulae for light-element microanalysis by electron energy-loss spectrometry, Ultramicroscopy 3, 243 (1978) [CrossRef] [PubMed] [Google Scholar]
- M. Isaacson, D. Johnson, The microanalysis of light elements using transmitted energy-loss electrons, Ultramicroscopy 1, 33 (1975) [CrossRef] [PubMed] [Google Scholar]
- C. Colliex, V.E. Cosslett, R.D. Leapman, P. Trebbia, Contribution of energy-loss spectroscopy to the development of analytical electron microscopy, Ultramicroscopy 1, 301 (1976) [CrossRef] [PubMed] [Google Scholar]
- M.S. Isaacson, J. Silcox, Report of a workshop on analytical electron microscopy, Cornell U. August 1976, Ultramicroscopy 2, 89 (1976) [CrossRef] [PubMed] [Google Scholar]
- C. Colliex, Electron energy loss spectroscopy in the electron microscope, in Advances in Optical and Electron Microscopy, edited by R. Barer and V.E. Cosslett (1984), Vol. 9,pp. 65–177, [reprinted in Adv. Imag. Electr. Phys. 211, 187(2019)] [Google Scholar]
- O.L. Krivanek et al., Vibrational spectroscopy in the electron microscope, Nature 514, 209 (2014) [CrossRef] [PubMed] [Google Scholar]
- O.L. Krivanek, T.C. Lovejoy, N. Dellby, R.W. Carpenter, Monochromated STEM with a 30-meV wide, atom-sized electron probe, Microscopy 62, 3 (2013) [CrossRef] [PubMed] [Google Scholar]
- A.V. Crewe, M. Isaacson, D. Johnson, A simple scanning electron microscope, Rev. Sci. Instrum. 40, 241 (1969) [CrossRef] [Google Scholar]
- A.V. Crewe, J. Wall, J. Langmore, Visibility of single atoms, Science 168, 1338 (1970) [CrossRef] [PubMed] [Google Scholar]
- K. Suenaga et al., Element-selective single atom imaging, Science 290, 2280 (2000) [CrossRef] [PubMed] [Google Scholar]
- M. Haider et al., Electron microscopy image enhanced, Nature 392, 768 (1998) [CrossRef] [Google Scholar]
- O.L. Krivanek, N. Dellby, A.R. Lupini, Towards sub-å electron beams, Ultramicroscopy 78, 1 (1999) [CrossRef] [Google Scholar]
- K. Kimoto et al., Element-selective imaging of atomic columns in a crystal using STEM and EELS, Nature 450, 702 (2007) [CrossRef] [PubMed] [Google Scholar]
- M. Bosman et al., Two-dimensional mapping of chemical information at atomic resolution, Phys. Rev. Lett. 99, 086102 (2007) [CrossRef] [PubMed] [Google Scholar]
- D.A. Muller et al., Atomic-scale chemical imaging of composition and bonding by aberration-corrected microscopy, Science 319, 1073 (2008) [CrossRef] [PubMed] [Google Scholar]
- See for a review: P.W. Hawkes, O.L. Krivanek, in Springer Handbook of Microscopy, edited by P.W. Hawkes, J.C.H. Spence (Springer, 2020) https://doi.org/10.1007/978-3-030-00069-1_13; [Google Scholar]
- See for a review K. Kimoto, Practical aspects of electron monochromators developed for transmission electron microscopy, Microscopy 63, 337 (2014) [CrossRef] [PubMed] [Google Scholar]
- H. Shuman, Parallel recording of electron energy-loss spectra, Ultramicroscopy 6, 163 (1981) [CrossRef] [PubMed] [Google Scholar]
- H. Shuman, P. Kruit, Quantitative data processing of parallel recorded electron energy-loss spectra with low signal to background, Rev. Sci. Instrum. 56, 231 (1985) [CrossRef] [Google Scholar]
- O.L. Krivanek, C.C. Ahn, R.B. Keeney, Parallel detection electron spectrometer using quadrupole lens, Ultramicroscopy 22, 103 (1987) [CrossRef] [Google Scholar]
- J. Scott et al., Near-simultaneous dual energy range EELS spectrum imaging, Ultramicroscopy 108, 1586 (2008) [CrossRef] [PubMed] [Google Scholar]
- M. Tencé et al., A new detector device designed for quantitative EELS spectroscopy, Proc. IMC 16 (2006), Sapporo, Japan edited by H. Ichinose; T. Sasaki (2006), pp. 824–825 [Google Scholar]
- K. March et al., in Addressing challenges in electron energy-loss spectroscopy on individual atoms, Proc. IMC 18 (2014), Prague, Czech. Republic, edited by P. Hozak (2014) IT-5-P-6028 [Google Scholar]
- G. McMullan, A.R. Faruqui, D. Clare, R. Henderson, Comparison of optimal performance at 300 keV of three direct electron detectors for use in low dose electron microscopy, Ultramicroscopy 147, 156 (2014) [CrossRef] [PubMed] [Google Scholar]
- J.L. Hart et al., Direct detection electron energy loss spectroscopy : a method to push the limits of resolution and sensitivity, Sci. Rep. 7, 8243 (2017) [CrossRef] [Google Scholar]
- The Nobel Prize in Chemistry 2017 is awarded to Jacques Dubochet, Joachim Frank and Richard Henderson for “developing cryo-electron microscopy for the high-resolution structure determination of biomolecules in solution”, https://www.nobelprize.org/uploads/2018/06/press-41 [Google Scholar]
- J.A. Mir et al., Characterisation of the Medipix3 detector for 60 and 80 keV electrons, Ultramicroscopy 182, 44 (2017) [CrossRef] [PubMed] [Google Scholar]
- R. Castaing, L. Henry, Filtrage magnétique des vitesses en microscopie électronique, C.R. Acad. Sci. Sér. B 255, 76 (1962) [Google Scholar]
- C. Jeanguillaume, C. Colliex, Spectrum-image: the next step in EELS digital acquisition and processing, Ultramicroscopy 28, 252 (1989) [CrossRef] [Google Scholar]
- J.A. Hunt, D. Williams, Electron energy-loss spectrum imaging, Ultramicroscopy 38, 47 (1991) [CrossRef] [Google Scholar]
- J.L. Lavergne, J.M. Martin, L. Belin, Interactive electron energy-loss elemental mapping by the Imaging-Spectrum method, Microsc. MicroanaL Microstruct. 3, 517 (1992) [CrossRef] [EDP Sciences] [Google Scholar]
- HyperSpy: multi-dimensional data analysis toolbox – https://hyperspy.org/index.html [Google Scholar]
- S. Lichtert, J. Verbeeck, Statistical consequences of applying a PCA noise filter on EELS spectrum images, Ultramicroscopy 125, 35 (2013) [CrossRef] [PubMed] [Google Scholar]
- J. Spiegelberg, J. Rusz, K. Pelckmans, Tensor decompositions for the analysis of atomic resolution electron energy loss spectra, Ultramicroscopy 175, 36 (2017) [CrossRef] [PubMed] [Google Scholar]
- F. de la Peňa et al., Mapping titanium and zinc oxide phases using EELS: an application of Independent Component Analysis, Ultramicroscopy 111, 169 (2011) [CrossRef] [PubMed] [Google Scholar]
- N. Bonnet, D. Nuzillard, Independent Component Analysis: a new possibility for analyzing series of electron energy loss spectra, Ultramicroscopy 102, 327 (2005) [CrossRef] [PubMed] [Google Scholar]
- J.M.P. Nascimento, J.M.B. Dias, Vertex Component Analysis: a fast algorithm to unmix hyperspectral data, IEEE Trans. Geosci. Remote Sens. 43, 898 (2005) [CrossRef] [Google Scholar]
- N. Dobigeon et al., Joint bayesan endmember extraction and linear unmixing for hyperspectral imagery, IEEE Trans. Signal Process. 57, 4355 (2009) [CrossRef] [MathSciNet] [Google Scholar]
- N. Dobigeon, N. Brun, Spectral mixture analysis of EELS spectrum-images, Ultramicroscopy 120, 25 (2012) [CrossRef] [PubMed] [Google Scholar]
- A. Zobelli et al., Dynamic random scan approach of spectrum imaging for temporal evolution of spectroscopic signals, Microsc. Microanal. 25, 162 (2019) [CrossRef] [Google Scholar]
- E. Monier et al., Reconstruction of partially sampled multiband images — application to STEM-EELS imaging, IEEE Trans. Comput. Imag. 4, 585 (2018) [CrossRef] [Google Scholar]
- A. Zobelli et al., Spatial ad spectral dynamics in STEM hyperspectral imaging using random scan patterns, Ultramicroscopy 212, 112912 (2020) [CrossRef] [PubMed] [Google Scholar]
- R.F. Egerton, Electron energy-loss spectroscopy in the electron microscope, 1st edn. (Plenum Press, 1986), 2nd edn., (Plenum Press, 1996) 3rd edn. (Springer, 2011) [Google Scholar]
- R.F. Egerton, Formulae for light element analysis by electron energy loss spectrometry, Ultramicroscopy 3, 243 (1978) [CrossRef] [PubMed] [Google Scholar]
- R.F. Egerton, K-shell ionization cross-sections for use in microanalysis, Ultramicroscopy 4, 169 (1979) [CrossRef] [Google Scholar]
- R.D. Leapman, P. Rez, D.F. Mayers, K, L and M shell generalized oscillator strengths and ionization cross sections for fast electron cross sections, J. Chem. Phys. 72, 1232 (1980) [CrossRef] [Google Scholar]
- J. Verbeeck, S. Van Aert, G. Bertoni, Model-based quantification of EELS spectra: including the fine structure, Ultramicroscopy 106, 976 (2006) [CrossRef] [PubMed] [Google Scholar]
- R. Arenal et al., Extending the analysis of EELS spectrum-imaging data, from elemental to bond mapping in complex nanostructures, Ultramicroscopy 109, 32 (2008) [CrossRef] [PubMed] [Google Scholar]
- K. Kimoto et al., Element-selective imaging of atomic columns in a crystal using STEM and EELS, Nature 450, 702 (2007) [CrossRef] [PubMed] [Google Scholar]
- M. Bosman et al., Two-dimensional mapping of chemical information at atomic resolution, Phys. Rev. Lett. 99, 086102 (2007) [CrossRef] [PubMed] [Google Scholar]
- D.A. Muller et al., Atomic-scale chemical imaging of composition and bonding by aberration-corrected microscopy, Science 319, 1073 (2008) [CrossRef] [PubMed] [Google Scholar]
- A. Gloter et al., Atomically resolved mapping of EELS fine structures, Mater. Sci. Semicond. Process 65, 2 (2017) [CrossRef] [Google Scholar]
- J.A. Tossell, D.J. Vaughan, K.H. Johnson, The electronic structure of rutile, wustite and hematite from molecular calculations, Am. Mineral. 59, 319 (1974) [Google Scholar]
- C. Colliex, T. Manoubi, C. Ortiz, Electron energy-loss spectroscopy near-edge fine structures in the iron oxygen system, Phys. Rev. B 44, 402 (1991) [Google Scholar]
- S.-Y. Chen et al., Electron energy loss spectroscopy and ab initio investigation of iron oxide nanomaterials grown by a hydrothermal process, Phys. Rev. B 79, 104103 (2009) [CrossRef] [Google Scholar]
- G. Radtke, G.A. Botton, in Energy loss near-edge structures, Scanning Transmission Electron Microscopy, edited by S.J. Pennycook, P.D. Nellist (Springer Science+Business Media, 2011), pp. 207–245 [Google Scholar]
- A. Torres-Pardo et al., Spectroscopic mapping of local structural distorsions in ferroelectric PbTi03/SrTiO3 superlattices at the unit-cell scale, Phys. Rev. B 84, 220102(R) (2011) [CrossRef] [Google Scholar]
- K. Suenaga et al., Visualizing and identifying single atoms using electron energy-loss spectroscopy with low accelerating voltage, Nat. Chem. 1, 415 (2009) [CrossRef] [PubMed] [Google Scholar]
- H. Tan et al., 2D atomic mapping of oxidation states in transition metal oxides by scanning transmission electron microscopy and electron energy loss spectroscopy, Phys. Rev. Lett. 107, 107602 (2011) [CrossRef] [PubMed] [Google Scholar]
- L. Bocher et al., Direct evidence of Fe2+ - Fe3+ charge ordering in the ferrimagnetic hematite -ilmenite Fe1.35Ti0.65O3-d thin film, Phys. Rev. Lett. 111, 167202 (2013) [CrossRef] [PubMed] [Google Scholar]
- S. Turner et al., Site-specific mapping of transition metal oxygen coordination in complex oxides, Appl. Phys. Lett. 101, 241910 (2012) [CrossRef] [Google Scholar]
- H. Raether, Electron energy loss spectroscopy, Springer Tracts, Mod. Phys. 38, 85 (1965) [Google Scholar]
- J. Daniels et al., Optical constants of solids by electron spectroscopy, in Springer Tracts Mod. Phys. (Springer Verlag, New York, 1970) Vol. 54, pp. 78–135 [Google Scholar]
- H. Raether, Excitation of plasmons and interband transitions by electrons, in Springer Tracts Mod. Phys. (Springer, Berlin, 1980), Vol. 88 [Google Scholar]
- C. Colliex, Electron energy-loss spectroscopy on solids, in International tables of Crystallography, Chapter 4-3-3d (1992), pp. 338–359 [Google Scholar]
- M. Couillard et al., Multiple-interface coupling effects in local electron energy-loss measurements of band gap energies, Phys. Rev. B 76, 165131 (2007) [CrossRef] [Google Scholar]
- L. Hung et al., Interpretation of monoclinic hafnia valence electron energy-loss spectra by time-dependent density functional theory, Phys. Rev. B 93, 165105 (2016) [CrossRef] [Google Scholar]
- N. Vast et al., Local field effects in the electron energy loss spectra of rutile Ti O2, Phys. Rev. Lett. 88, 037601 (2002) [CrossRef] [PubMed] [Google Scholar]
- L.K. Dash et al., Electronic structure and electron energy-loss spectroscopy of ZrO2 zirconia, Phys. Rev. B 70, 245116 (2004) [CrossRef] [Google Scholar]
- C. Colliex, B. Jouffrey, Pertes d’énergie dans des couches minces de gaz solidifiés, J. Phys. 32, 461 (1971) [CrossRef] [EDP Sciences] [Google Scholar]
- R. Haensel et al., Reflection spectrum of solid argon in the vacuum ultra-violet, Phys. Rev. Lett. 23, 1160 (1969) [CrossRef] [Google Scholar]
- U. Rössler, Electron and exciton states in solid rare gases, Phys. Status Solidi 42, 345 (1970) [CrossRef] [Google Scholar]
- S. Schamm, G. Zanchi, Study of the dielectric properties near the band-gap by VEELS: gap measurements in bulk materials, Ultramicroscopy 96, 559 (2003) [CrossRef] [PubMed] [Google Scholar]
- B. Rafferty, L.M. Brown, Direct and indirect transitions in the region of the band-gap investigated by electron energy-loss spectroscopy, Phys. Rev. B 58, 10326 (1998) [CrossRef] [Google Scholar]
- P. Moreau, M.C. Cheynet, Improved comparison of low energy-loss spectra with band structure calculations: the example of BN filaments, Ultramicroscopy 94, 293 (2003) [CrossRef] [PubMed] [Google Scholar]
- S. Lazar et al., Materials science applications of HREELS in near-edge structure analysis and low energy loss spectroscopy, Ultramicroscopy 96, 535 (2003) [CrossRef] [PubMed] [Google Scholar]
- R. Erni, N.D. Browning, Valence electron energy-loss spectroscopy in monochromated scanning transmission electron microscopy, Ultramicroscopy 104, 176 (2005) [CrossRef] [PubMed] [Google Scholar]
- R. Erni, N.D. Browning, Quantification of the size-dependent energy gap of individual CdSe quantum dots by valence electron energy-loss spectroscopy, Ultramicroscopy 107, 267 (2007) [CrossRef] [PubMed] [Google Scholar]
- L. Gu et al., Band-gap measurements of direct and indirect semiconductors using monochromated electrons, Phys. Rev. B 75, 195214 (2007) [CrossRef] [Google Scholar]
- J. Park et al., Bandgap measurements of thin dielectric films using monochromated STEM-EELS, Ultramicroscopy 109, 1183 (2009) [CrossRef] [PubMed] [Google Scholar]
- K. Kimoto et al., Advantages of a monochromator for bandgap measurements using electron energy-loss spectroscopy, Micron 36, 185 (2005) [CrossRef] [PubMed] [Google Scholar]
- C.S. GranerØd, W. Zhan, Ø. Prytz, Automated approaches for bandgap mapping in STEM-EELS, Ultramicroscopy 184, 39 (2018) [CrossRef] [PubMed] [Google Scholar]
- M. Stöger-Pollach et al., Cerenkov losses : a limit for bandgap determination and Kramers-Kronig analysis, Micron 37, 396 (2006) [CrossRef] [PubMed] [Google Scholar]
- M. Mecklemburg et al., Nanoscale temperature mapping in operating microelectronic devices, Science 347, 629 (2015) [CrossRef] [PubMed] [Google Scholar]
- R.H. Ritchie, Plasma losses by fast electrons in thin films, Phys. Rev. 106, 874 (1957) [CrossRef] [MathSciNet] [Google Scholar]
- E.A. Stern, R.A. Ferrell, Surface plasma oscillations of a degenerate electron gas, Phys. Rev. 120, 130 (1960) [CrossRef] [MathSciNet] [Google Scholar]
- R.B. Pettit, J. Silcox, R. Vincent, Measurement of surface plasmon dispersion in oxidized aluminum films, Phys. Rev. B 11, 3116 (1975) [CrossRef] [Google Scholar]
- P. Moreau et al., Relativistic effects in electron energy-loss spectroscopy observations of the Si/SiO2 interface plasmon peak, Phys. Rev. B 56, 6774 (1997) [CrossRef] [Google Scholar]
- J.P.R. Bolton, M. Chen, Electron energy-loss in multilayered slabs, Ultramicroscopy 60, 247 (1995) [CrossRef] [Google Scholar]
- M. Couillard, A. Yurtsever, D.A. Muller, Competition between bulk and interface plasmonic modes in valence electron energy-loss spectroscopy of ultrathin SiO2 gate stacks, Phys. Rev. B 77, 085318 (2008) [CrossRef] [Google Scholar]
- D. Ugarte, C. Colliex, P. Trebbia, Surface- and interface-plasmon modes on small semiconducting cases, Phys. Rev. 45, 4332 (1992) [CrossRef] [PubMed] [Google Scholar]
- M.W. Chu et al., Probing bright and dark surface modes in individual and coupled noble metal nanoparticles using an electron beam, Nano Lett. 9, 399 (2009) [CrossRef] [PubMed] [Google Scholar]
- D. Rossouw et al., Multipolar plasmonic resonances in silver nanowire antennas imaged with a subnanomater electron probe, Nano Lett. 11, 1499 (2011) [CrossRef] [PubMed] [Google Scholar]
- M. Kociak et al., Plasmons in layered nanospheres and nanotubes investigated by spatially resolved electron energy-loss spectroscopy, Phys. Rev. B 61, 13936 (2000) [CrossRef] [Google Scholar]
- O. Stéphan et al., Dielectric response of isolated carbon nanotubes investigated by spatially resolved electron energy-loss spectroscopy: from multi-walled to single-walled nanotubes, Phys. Rev. B 66, 155422 (2002) [CrossRef] [Google Scholar]
- F.J. Garcia de Abajo, Optical excitations in electron microscopy, Rev. Mod. Phys. 82, 209 (2010) [CrossRef] [Google Scholar]
- M. Kociak et al., Seeing and measuring in colours : Electron microscopy and spectroscopies applied to nano-optics, C.R. Physique 15, 158 (2014) [CrossRef] [Google Scholar]
- M. Kociak, O. Stéphan, Mapping plasmons at the nanometer scale in an electron microscope, Chem. Soc. Rev. 43, 3865 (2014) [CrossRef] [PubMed] [Google Scholar]
- C. Colliex, M. Kociak, O. Stéphan, Electron Energy Loss Spectroscopy imaging of surface plasmons at the nanometer scale, Ultramicroscopy 162, A1 (2016) [CrossRef] [PubMed] [Google Scholar]
- J. Nelayah et al., Mapping surface plasmons on a single metallic nanoparticle, Nat. Phys. 3, 348 (2007) [CrossRef] [Google Scholar]
- J. Nelayah et al., Two-dimensional quasi-static stationary short-range surface plasmons in flat nanoprisms, Nano Lett. 10, 902 (2010) [CrossRef] [PubMed] [Google Scholar]
- L. Gu et al., Resonant wedge-plasmon modes in single-crystalline gold nanoplatelets, Phys. Rev. B 83, 195433 (2011) [CrossRef] [Google Scholar]
- U. Hohenester, A. Trügler, MNPBEM- a Matlab toolbox for the simulation of plasmonic nanoparticles, Comput. Phys. Commun. 183, 170 (2012) [Google Scholar]
- N. Geuquet, L. Henrard, EELS and optical response of a noble metal nanoparticle in the frame of a dipole discrete approximation, Ultramicroscopy 110, 1075 (2010) [CrossRef] [Google Scholar]
- A. Campos et al., Plasmonic and edge modes in aluminum nanotriangles, ACS Photonics 4, 1257 (2017) [CrossRef] [Google Scholar]
- A. Arbouet, A. Mlayah, C. Girard, G. Colas des Francs, Electron energy losses and cathodoluminescence from complex plasmonic nanostructures: spectra, maps and radiation patterns from a generalized field propagator, New J. Phys. 16, 113012 (2014) [CrossRef] [Google Scholar]
- E. Ringe et al., Unraveling the effects of size, composition and substrate on the localized surface plasmon resonance frequencies of gold and silver nanocubes: a systematic single particle approach, J. Phys. Chem. C 114, 12511 (2010) [CrossRef] [Google Scholar]
- O. Nicoletti et al., Three-dimensional imaging of localized surface plasmon resonances of metal nanoparticles, Nature 502, 80 (2013) [CrossRef] [PubMed] [Google Scholar]
- S. Mazzucco et al., Spatially resolved measurements of plasmonic eigenstates in complex-shaped, asymmetric nanoparticles : gold nanostars, Eur. Phys. J. Appl. Phys. 54, 33512 (2011) [CrossRef] [EDP Sciences] [Google Scholar]
- E. Prodan, C. Radloff, N.J. Halas, P. Nordlander, A hybridization model for the plasmon response of complex nanostructures, Science 302, 419 (2003) [CrossRef] [PubMed] [Google Scholar]
- A.I. Koh et al., Electron energy loss spectroscopy (EELS) of surface plasmons in single silver nanoparticles and dimers : influence of beam damage and mapping of dark modes, ACS Nano 3, 3015 (2009) [CrossRef] [PubMed] [Google Scholar]
- I. Alber et al., Vizualization of multipolar and transversal surface plasmon modes in nanowire dimers, ACS Nano 12, 9845 (2011) [CrossRef] [PubMed] [Google Scholar]
- A.I. Koh et al., High resolution mapping of electron-beam excited plasmon modes in lithographically defined gold nanostructures, Nano Lett. 11, 1323 (2011) [CrossRef] [PubMed] [Google Scholar]
- S. Kadkhodazadeh, J. Wagner, H. Kneipp, K. Kneipp, Coexistence of classical and quantum plasmonics in large plasmonic structures with subnanometer gaps, Appl. Phys. Lett. 103, 083103 (2013) [CrossRef] [Google Scholar]
- R. Esteban, A.G. Borisov, P. Nordlander, J. Aizpurua, Bridging quantum and classical plasmonics with a quantum-corrected model, Nat. Commun. 3, 825 (2012) [CrossRef] [Google Scholar]
- C. Colliex, in Mapping electric fields with inelastic electrons in a transmission electron microscope, In Memory of Akira Tonomura: Physicist and Electron Microscopist, edited by K. Fujikawa, Y.A. Ono (World Scientific, 2014), pp. 144–155 [Google Scholar]
- S.T. Park, M. Lin, A.H. Zewail, Photon-induced near-field electron microscopy (PINEM): theoretical and experimental, New J. Phys. 12, 123028 (2010) [CrossRef] [Google Scholar]
- A. Yurtsever, A.H. Zewail, Direct visualization of near-fields in nanoplasmonics and nanophotonics, Nano Lett. 1, 3334 (2012) [CrossRef] [PubMed] [Google Scholar]
- A. Losquin et al., Unveiling nanoscale extinction and scattering phenomena through combined electron energy loss spectroscopy and cathodoluminescence, Nanoletters 15, 1229 (2015) [CrossRef] [PubMed] [Google Scholar]
- N. Kawasaki et al., Modes in silver nanoparticles probed by combined spatially resolved electron energy loss spectroscopy and cathodoluminescence, ACS Photonics 3, 1654 (2016) [CrossRef] [Google Scholar]
- F.J. Garcia de Abajo, M. Kociak, Probing the photonic local density of states with electron energy loss spectroscopy, Phys. Rev. Lett. 100, 106804 (2008) [CrossRef] [PubMed] [Google Scholar]
- A. Hörl, A. Trügler, U. Hohenester, Full three-dimensional reconstruction of the dyadic Green tensor from electron energy loss spectroscopy of plasmonic nanoparticles, ACS Photonics 2, 1429 (2015) [CrossRef] [PubMed] [Google Scholar]
- A. Hörl et al., Tomographic imaging of the photonic environment of plasmonic nanoparticles, Nat. Commun. 8, 37 (2017) [CrossRef] [Google Scholar]
- H. Ibach, D.L. Mills, Electron energy-loss spectroscopy and surface vibrations (Academic Press, New York, 1982) [Google Scholar]
- H. Boersch, J. Geiger, W. Stickel, Interaction of 25 keV electrons with lattice vibrations in LiF. Experimental evidence for surface modes of lattice vibrations, Phys. Rev. Lett. 17, 379 (1966) [CrossRef] [Google Scholar]
- B. Schröder, J. Geiger, Electron spectrometric study of amorphous germanium and silicon in the two phonon region, Phys. Rev. Lett. 28, 301 (1972) [CrossRef] [Google Scholar]
- M. Bosman et al., Surface plasmon damping quantified with an electron nanoprobe, Sci. Rep. 3, 1312 (2013) [CrossRef] [Google Scholar]
- V. Mkhitaryan et al., Can copper nanostructures sustain high-quality plasmons ?, Nano Lett. 21, 2444 (2021) [CrossRef] [PubMed] [Google Scholar]
- C. Dwyer et al., Electron-beam mapping of vibrational modes with nanometer spatial resolution, Phys. Rev. Lett. 117, 256101 (2016) [CrossRef] [PubMed] [Google Scholar]
- R.F. Egerton, Vibrational-loss EELS and the avoidance of radiation damage, Ultramicroscopy 159, 95 (2015) [CrossRef] [PubMed] [Google Scholar]
- P. Rez et al., Damage-free vibrational spectroscopy of biological materials in the electron microscope, Nat. Comms. (2016) DOI: 10.1038/ncomms10945 [Google Scholar]
- J. Hachtel et al., Identification of site-specific isotopic labels by vibrational spectroscopy in the electron microscope, Science 363, 525 (2019) [CrossRef] [PubMed] [Google Scholar]
- F.S. Hage et al., Nanoscale momentum-resolved vibrational spectroscopy, Sci. Adv. (2018) DOI:10.1126/sciadv.aar7495 [Google Scholar]
- F.S. Hage, D.M. Kepapstoglou, Q. Ramasse, L.J. Allen, Phonon spectroscopy at atomic resolution, Phys. Rev. Lett. 122, 016103 (2019) [CrossRef] [PubMed] [Google Scholar]
- X. Yan et al., Single-defect phonons imaged by electron microscopy, Nature 589, 65 (2021) [CrossRef] [PubMed] [Google Scholar]
- F.S. Hage et al., Single-atom vibrational spectroscopy in the scanning transmission electron microscope, Science 367, 1124 (2020) [CrossRef] [PubMed] [Google Scholar]
- H. Lourenço-Martins, M. Kociak, Vibrational surface Electron-Energy-Loss spectroscopy probes confined surface-phonon modes, Phys. Rev. X 7, 041059 (2017) [Google Scholar]
- M.J. Lagos, A. Trügler, U. Hohenester, P.E. Batson, Mapping vibrational bulk and surface modes in a single nanocube, Nature 543, 529 (2017) [CrossRef] [PubMed] [Google Scholar]
- G. Haberfehlner et al., 3D imaging of gap plasmons in vertically coupled nanoparticles by EELS tomography, Nano Lett. 17, 6773 (2017) [CrossRef] [PubMed] [Google Scholar]
- X. Li et al., Three dimensional vectorial imaging of surface phonons, Science 371, 1364 (2021) [CrossRef] [PubMed] [Google Scholar]
- M. Kociak, A. Gloter, O. Stéphan, A spectromicroscope for nanophysics, Ultramicroscopy 180, 81 (2017) [CrossRef] [PubMed] [Google Scholar]
- L.H.G. Tizei et al., Tailored nanoscale plasmon enhanced vibrational electron spectroscopy, Nano Lett. 20, 2973 (2020) [CrossRef] [PubMed] [Google Scholar]
- M. Tencé et al., Electron irradiation effects : a time-energy representation, Proc. EMAG 89, London, Inst. Phys. Conf. Ser. 98, 311 (1989) [Google Scholar]
- D. Bouchet, C. Colliex, Experimental study of ELNES at grain boundaries in alumina : intergranular radiation damage effects on Al-L23 and O-K edges, Ultramicroscopy 96, 139 (2003) [CrossRef] [PubMed] [Google Scholar]
- A. Gloter, A. Douiri, M. Tencé, C. Colliex, Improving energy resolution of EELS spectra : an alternative to the monochromator solution, Ultramicroscopy 96, 385 (2003) [CrossRef] [PubMed] [Google Scholar]
- A.H. Zewail, Four-dimensional electron microscopy, Science 328, 187 (2010) [CrossRef] [PubMed] [Google Scholar]
- A.H. Zewail, J.M. Thomas, 4D electron microscopy imaging in space and time (Imperial College Press, London, 2010) [Google Scholar]
- B. Barwick, D.J. Flannigan, A.H. Zewail, Photon-induced near field electron microscopy, Nature 462, 902 (2009) [CrossRef] [PubMed] [Google Scholar]
- F.J. Garcia de Abajo, M. Kociak, Electron energy gain spectroscopy, N. J. Phys. 10, 073035 (2008) [CrossRef] [Google Scholar]
- F.J. Garcia de Abajo, A. Asenjo-Garcia, M. Kociak, Multiphoton absorption and emission by interaction of swift electrons with evanescent light fields, Nano Lett. 10, 1859 (2010) [CrossRef] [PubMed] [Google Scholar]
- A. Yurtsever, R. van der Veen, A.H. Zewail, Subparticle ultrafast spectrum imaging in 4D electron microscopy, Science 335, 59 (2012) [CrossRef] [PubMed] [Google Scholar]
- E. Pomarico et al., meV resolution in laser-assisted energy-filtered transmission electron microscopy, ACS Photonics 5, 759 (2017) [Google Scholar]
- L. Piazza et al., Simultaneous observation of the quantization and the interference pattern of a plasmonic near-field, Nat. Commun. 6, 6407 (2015) [CrossRef] [Google Scholar]
- J. Schilling, H. Raether, Energy gain of fast electrons interacting with surface plasmons, J. Phys. C: Solid State Phys. 6, 358 (1973) [Google Scholar]
- J.C. Idrobo et al., Temperature measurement by a nanoscale nanoprobe using energy gain and loss spectroscopy, Phys. Rev. Lett. 120, 095901 (2018) [CrossRef] [PubMed] [Google Scholar]
- M.J. Lagos, P.E. Batson, Thermometry with sub nanometer resolution in the electron microscope using the principle of detailed balancing, Nano Lett. 18, 4556 (2018) [CrossRef] [PubMed] [Google Scholar]
- P. Das et al., Stimulated electron energy loss and gain in an electron microscope without a pulsed electron gun, Ultramicroscopy 203, 44 (2019) [CrossRef] [PubMed] [Google Scholar]
- Y. Auad et al., (2021) to be published [Google Scholar]
- D.B. Williams, C.B. Carter, Transmission Electron Microscopy, a textbook for materials science, Second Edition (2009) Ed. Springer [CrossRef] [Google Scholar]
- C. Colliex et al., The STEM multi-signal approach: learning the most from your nano-object, Microscopy and Analysis, 25th anniversary issue 26 (2012) 33 [Google Scholar]
- A.J. d'Alonso, B. Freitag, D. Klenov, L.J. Allen, Atomic-resolution chemical mapping using energy dispersive X-ray spectroscopy, Phys. Rev. B 81, 100101 (2010) [CrossRef] [Google Scholar]
- M.W. Chu et al., Emergent chemical mapping at atomic-column resolution by energy-dispersive X-ray spectroscopy in an aberration-corrected electron microscope, Phys. Rev. Lett. 104, 196101 (2010) [CrossRef] [PubMed] [Google Scholar]
- K. Suenaga, T. Okaszaki, E. Okunishi, S. Matsumura, Detection of photons emitted by single erbium atoms in energy-dispersive X-ray spectroscopy, Nat. Photonics 6, 545 (2012) [CrossRef] [Google Scholar]
- L.F. Zagonel et al., Nanometer scale spectral imaging of quantum emitters in nanowires and its correlation to their atomically resolved nanostructure, Nano Lett. 11, 568 (2011) [CrossRef] [PubMed] [Google Scholar]
- L.H.G. Tizei, M. Kociak, Spectrally and spatially resolved cathodoluminescence of nano-diamonds : local variations of the NV0 emission properties, Nanotechnology 23, 175702 (2012) [CrossRef] [PubMed] [Google Scholar]
- M. Kociak, L.F. Zagonel, Cathodoluminescence, Ultramicroscopy 174, 50 (2017) [CrossRef] [PubMed] [Google Scholar]
- R. Bourrellier et al., Bright UV single photon emission at point defects in h-BN, Nano Lett. 16, 4317 (2016) [CrossRef] [PubMed] [Google Scholar]
- S. Meuret et al., Photon bunching in cathodoluminescence, Phys. Rev. Lett. 114, 197401 (2015) [CrossRef] [PubMed] [Google Scholar]
- S. Meuret et al., Lifetime measurements well below the optical diffraction limit, ACS Photonics 3, 1157 (2016) [CrossRef] [Google Scholar]
- N. Bonnet et al., Nanoscale modification of WS2 trion emission by its local electromagnetic environment, Nano Lett. 21, 10178 (2021) [CrossRef] [PubMed] [Google Scholar]
- U. Valdre, Electron microscope stage design and applications, J. Microsc. 117, 55 (1979) [CrossRef] [Google Scholar]
- C. Colliex, B. Jouffrey, Un nouveau porte-objet refroidi à l’hélium liquide, J. Microsc. 7, 601 (1968) [Google Scholar]
- I. Koita et al., Dynamic of metal/insulator domains switching in V2O3 mapped by cryo-spectromicroscopy under variable-temperature conditions, JEELS meeting Münster (2021) proceedings 35-36 [Google Scholar]
- see www.hennyz.com and B. Goodge et al., Microsc. Anal. 26, 439 (2020) [Google Scholar]
- F.M. Ross, Liquid Cell Electron Microscopy, Advances in Microscopy and Microanalysis (Cambridge University Press and Materials Research Society Pub., 2017) [Google Scholar]
- N. de Jonge, F.M. Ross, Past, present and future electron microscopy of liquid specimens in Liquid Cell Electron Microscopy, Advances in Microscopy and Microanalysis, edited by F.M. Ross (Cambridge University Press and Materials Research Society Pub., 2017), pp. 3–34 [Google Scholar]
- E. Jensen, K. Molhave, Encapsulated liquid cells for transmission electron microscopy, in Liquid Cell Electron Microscopy, Advances in Microscopy and Microanalysis, edited by F.M. Ross (Cambridge University Press and Materials Research Society Pub., 2017), pp. 35–55 [Google Scholar]
- J. Park, V.P. Adiga, A. Zettl, A.P. Alivisatos, High resolution imaging in the graphene liquid cell, in Liquid Cell Electron Microscopy, Advances in Microscopy and Microanalysis, edited by F.M. Ross (Cambridge University Press and Materials Research Society Pub., 2017), pp. 393–407 [Google Scholar]
- M.E. Holtz, D.A. Muller, N.J. Zaluzec, Analytical electron microscopy during In Situ liquid cell studies, in Liquid Cell Electron Microscopy, Advances in Microscopy and Microanalysis, edited by F.M. Ross (Cambridge University Press and Materials Research Society Pub., 2017), pp. 408–433 [Google Scholar]
- D.J. Kelly et al., Nanometer resolution elemental mapping in graphene-based TEM liquid cells, Nano Lett. 18, 1168 (2018) [CrossRef] [PubMed] [Google Scholar]
- P. Schattschneider et al., Detection of magnetic circular dichroism using a transmission electron microscope, Nature 441, 486 (2006) [CrossRef] [PubMed] [Google Scholar]
- M. Uchida, A. Tonomura, Generation of electron beams carrying orbital angular momentum, Nature 464, 737 (2010) [CrossRef] [PubMed] [Google Scholar]
- J. Verbeeck, H. Tian, P. Schattschneider, Production and application of electron vortex beams, Nature 467, 301 (2010) [CrossRef] [PubMed] [Google Scholar]
- G. Guzzinati et al., Probing the symmetry of the potential of the localized surface plasmon resonances with phase-shaped electron beams, Nat. Commun. (2017) DOI:10.1038/ncomms14999 [Google Scholar]
- A. Feist et al., Quantum coherent optical phase modulation in an ultrafast transmission electron microscope, Nature 521, 200 (2015) [CrossRef] [PubMed] [Google Scholar]
- A. Feist et al., Ultrafast transmission electron microscopy using a laser driven field emitter : femtosecond resolution with a high coherence electron beam, Ultramicroscopy 176, 63 (2017) [CrossRef] [PubMed] [Google Scholar]
- K.E. Echternkamp, A. Feist, S. Schäfer, C. Ropers, Ramsey-type phase control of free-electron beams, Nat. Phys. 12, 1000 (2016) [CrossRef] [Google Scholar]
- O. Kfir et al., Controlling free electrons with optical whispering gallery modes, Nature 582, 46 (2020) [CrossRef] [PubMed] [Google Scholar]
- A. Wang et al., Coherent interaction between free electrons and a photonic cavity, Nature 582, 50 (2020) [CrossRef] [PubMed] [Google Scholar]
- S.R. Spurgeon et al., Towards data-driven next-generation transmission electron microscopy, Nat. Mat. 20, 274 (2021) [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.