Issue
Eur. Phys. J. Appl. Phys.
Volume 97, 2022
Special Issue on ‘Amorphous alloys and multiscale materials: Fundamental aspects and Energy applications’, edited by Zhao Zhankui, Wang Hongli and Tai Cheuk-Wai
Article Number 84
Number of page(s) 14
Section Nanomaterials and Nanotechnologies
DOI https://doi.org/10.1051/epjap/2022220179
Published online 30 November 2022
  1. R. Lee, Science 333, 569 (2011) [Google Scholar]
  2. M.M. Mekonnen, A.Y. Hoekstra, Sci Adv. 2, e1500323 (2016) [Google Scholar]
  3. I. Arto, V. Andreoni, J.M. Rueda-Cantuche, Water Resour. Econ. 15, 1 (2016) [Google Scholar]
  4. T. Oki, S. Kanae, Science 313, 1068 (2006) [Google Scholar]
  5. E. Jones et al., Sci. Total Environ. 657, 1343 (2019) [Google Scholar]
  6. E. Anastasiou et al., Lancet Infect. Dis. 14, 553 (2014) [Google Scholar]
  7. T. Arunkumar et al., Desalination 286, 342 (2012) [Google Scholar]
  8. S.F. Anis, R. Hashaikeh, N. Hilal, Desalination 468, 114077 (2019) [Google Scholar]
  9. M. Qasim et al., Desalination 459, 59 (2019) [Google Scholar]
  10. H. El-Dessouky, H.I. Shaban, H. Al-Ramadan, Desalination 103, 271 (1995) [Google Scholar]
  11. J.A. Carballo et al., Desalination 435, 70 (2018) [Google Scholar]
  12. M. Chandrashekara, A. Yadav, Renew. Sustain. Energy Rev. 67, 1308 (2017) [Google Scholar]
  13. A.K. Jena, A. Kulkarni, T. Miyasaka, Chem. Rev. 119, 3036 (2019) [Google Scholar]
  14. A. Naidoo, Renew. Sustain. Energy Rev. 119, 109525 (2020) [Google Scholar]
  15. L. Zhu et al., Mater. Horizons 5, 323 (2018) [Google Scholar]
  16. E. Delyannis, Solar Energy 75, 357 (2003) [Google Scholar]
  17. C. Li, Y. Goswami, E. Stefanakos, Renew. Sustain. Energy Rev. 19, 136 (2013) [Google Scholar]
  18. O. Neumann et al., ACS Nano. 7, 42 (2013) [Google Scholar]
  19. H. Ghasemi et al., Nat. Commun. 5, 4449 (2014) [Google Scholar]
  20. Y. Zhang et al., Adv Sci (Weinh) 7, 1903478 (2020) [Google Scholar]
  21. P. Sun et al., ACS Appl. Mater. Interfaces 12, 2171 (2020) [Google Scholar]
  22. Y. Long et al., J. Mater. Chem. A 7, 26911 (2019) [Google Scholar]
  23. X. Wu et al., Mater. Today Energy 12, 277 (2019) [Google Scholar]
  24. G. Martinopoulos, A. Ikonomopoulos, G. Tsilingiridis, Desalination 399, 165 (2016) [Google Scholar]
  25. T. Liang et al., Renew. Energy 173, 942 (2021) [Google Scholar]
  26. H. Zhang et al., Solar Energy 201, 628 (2020) [Google Scholar]
  27. R. Zhu et al., Chem. Eng. J. 423, 129099 (2021) [Google Scholar]
  28. S. Namboorimadathil Backer et al., ACS Appl. Nano Mater. 3, 6827 (2020) [Google Scholar]
  29. Q. Zhu et al., J. Phys. Chem. Lett. 11, 2502 (2020) [Google Scholar]
  30. C. Zhang et al., J. Am. Ceram. Soc. 103, 3466 (2020) [Google Scholar]
  31. Y. Zhang et al., Chemosphere. 256, 127053 (2020) [Google Scholar]
  32. J. Li et al., Solar RRL. 6, 2101011 (2022) [Google Scholar]
  33. Q. Li et al., Sol. Energy Mater. Sol. Cells 243, 111815 (2022) [Google Scholar]
  34. L. Zhu et al., Adv. Eng. Mater. 9, 1900376 (2019) [Google Scholar]
  35. Q. Zhou et al., J Colloid Interface Sci. 592, 77 (2021) [Google Scholar]
  36. X. Deng et al., ACS Appl. Mater. Interfaces 12, 26200 (2020) [Google Scholar]
  37. Z. Zhang et al., ChemSusChem. 12, 426 (2019) [Google Scholar]
  38. D. Zhang, Y. Huang, Progr. Org. Coat. 159, 106407 (2021) [Google Scholar]
  39. M. Zhu et al., Adv. Eng. Mater. 8, 1802238 (2018) [Google Scholar]
  40. M. Wang et al., ChemSusChem. 12, 467 (2019) [Google Scholar]
  41. H.-W. Zhu et al., Sci. China Mater. 63, 1957 (2020) [Google Scholar]
  42. L. Zhou et al., Nat. Photonics. 10, 393 (2016) [Google Scholar]
  43. J. Chen et al., Small Sci. 1 (2021) [Google Scholar]
  44. M. Gao et al., Adv. Eng. Mater. 8 (2018) [Google Scholar]
  45. D. Li et al., Chemosphere 267, 128916 (2021) [Google Scholar]
  46. F. Liu et al., Mater. Today Energy 16, 100375 (2020) [Google Scholar]
  47. H. Huang et al., ACS Appl. Mater. Interfaces 12, 11204 (2020) [Google Scholar]
  48. Q. Huang et al., Desalination 499, 114806 (2021) [Google Scholar]
  49. Z. Wang et al., Mater. Lett. 286, 129188 (2021) [Google Scholar]
  50. H. Chen et al., Adv. Energy Sustain. Res. 2 (2021) [Google Scholar]
  51. S. Cao et al., J. Mater. Chem. A 7, 24092 (2019) [Google Scholar]
  52. Z. Xie et al., Adv. Sci. (Weinh) 7, 1902236 (2020) [Google Scholar]
  53. Y. Yang et al., Chem. Eng. J. 373, 955 (2019) [Google Scholar]
  54. L. Zhang et al., Water Res. 170, 115367 (2020) [Google Scholar]
  55. K. Li et al., Adv. Eng. Mater. 9 (2019) [Google Scholar]
  56. J.-T. Wang, J.-L. Hong, Appl. Therm. Eng. 178 (2020) [Google Scholar]
  57. M. Gao et al., Energy Environ. Sci. 12, 841 (2019) [Google Scholar]
  58. J.R. Vélez-Cordero, J. Hernández-Cordero, Int. J. Thermal Sci. 96, 12 (2015) [Google Scholar]
  59. Y. Wang, L. Zhang, P. Wang, ACS Sustain. Chem. Eng. 4, 1223 (2016) [Google Scholar]
  60. P. Mu et al., Adv. Eng. Mater. 9 (2019) [Google Scholar]
  61. M. Kim et al., Carbon 164, 349 (2020) [Google Scholar]
  62. H.C. Yang et al., Adv. Mater. Interfaces 6 (2018) [Google Scholar]
  63. S. Jo et al., Biosens. Bioelectron. 181, 113118 (2021) [Google Scholar]
  64. H. Wei, S.M. Hossein Abtahi, P.J. Vikesland, Environ. Sci.: Nano. 2, 120 (2015) [Google Scholar]
  65. K. Fuku et al., Angew. Chem. Int. Ed. Engl. 52, 7446 (2013) [Google Scholar]
  66. C. Zhang et al., Energy Technol. 7 (2019) [Google Scholar]
  67. L. Ren et al., Nano Lett. 21, 1709 (2021) [Google Scholar]
  68. Z. Sun et al., Adv. Funct. Mater. 29, 1901312 (2019) [Google Scholar]
  69. J. Yang et al., Angew. Chem. Int. Ed. Engl. 50, 441 (2011) [Google Scholar]
  70. X. Wu et al., Adv. Sustain. Syst. 1, 1700046 (2017) [Google Scholar]
  71. M.S. Irshad, N. Arshad, X. Wang, Glob. Chall. 5, 2000055 (2021) [Google Scholar]
  72. H. Fan et al., Chem. Eng. J. 415, 128798 (2021) [Google Scholar]
  73. M. Gao, P.K.N. Connor, G.W. Ho, Energy Environ. Sci. 9, 3151 (2016) [Google Scholar]
  74. G. Ni et al., Nano Energy 17, 290 (2015) [Google Scholar]
  75. O. Neumann et al., Proc. Natl. Acad. Sci. U S A. 110, 11677 (2013) [Google Scholar]
  76. M.S. Zielinski et al., Nano Lett. 16, 2159 (2016) [Google Scholar]
  77. F. Peng et al., Sol. Energy Mater. Sol. Cells 221, 110910 (2021) [Google Scholar]
  78. Y. Yang et al., ACS Energy Lett. 3, 1165 (2018) [Google Scholar]
  79. H. Jian et al., Sep. Purif. Technol. 264, 118459 (2021) [Google Scholar]
  80. S. Naseem, C.-M. Wu, K.G. Motora, Desalination 517, 115256 (2021) [Google Scholar]
  81. Z. Qin et al., ACS Appl. Mater. Interfaces 13, 19467 (2021) [Google Scholar]
  82. X. Zhang et al., ACS Sustain. Chem. Eng. 8, 18114 (2020) [Google Scholar]
  83. M. Zou et al., Adv. Mater. 33, e2102443 (2021) [Google Scholar]
  84. C. Tu et al., Small 15, e1902070 (2019) [Google Scholar]
  85. Y. Li et al., Nano Energy 41, 201 (2017) [Google Scholar]
  86. X. Li et al., Natl. Sci. Rev. 5, 70 (2018) [Google Scholar]
  87. W. Huang et al., Nano Energy 69, 104465 (2020) [Google Scholar]
  88. Y. Li et al., Adv. Mater. 29, 1606459 (2017) [Google Scholar]
  89. Y. Chen et al., Mater. Res. Express. 7, 015507 (2020) [Google Scholar]
  90. Z. Fang et al., Nano Lett. 13, 1736 (2013) [Google Scholar]
  91. Q. Zhang et al., Appl. Energy 276, 115545 (2020) [Google Scholar]
  92. H. Liu et al., J. Mater. Chem. A 6, 18839 (2018) [Google Scholar]
  93. Q. Fang et al., ACS Appl. Mater. Interfaces 11, 10672 (2019) [Google Scholar]
  94. Y. Xia et al., Energy Environ. Sci. 12, 1840 (2019) [Google Scholar]
  95. L. Zhu et al., Adv. Eng. Mater. 8, 1802080 (2018) [Google Scholar]
  96. Y. Lu et al., Solar RRL 4, 2000232 (2020) [Google Scholar]
  97. X. Wu et al., Adv. Sci. (Weinh) 8, 2002501 (2021) [Google Scholar]
  98. Y. Bian et al., Adv. Mater. Technolog. 4, 1800593 (2019) [Google Scholar]
  99. X. Wu et al., Adv. Funct. Mater. 31, 2108072 (2021) [Google Scholar]
  100. N. Xu et al., Adv. Mater. 29, 1606762 (2017) [Google Scholar]
  101. X. Sun et al., J. Mater. Chem. A 9, 23891 (2021) [Google Scholar]
  102. G. Ni et al., Nat. Energy 1, 16126 (2016) [Google Scholar]
  103. S. Hong et al., ACS Appl. Mater. Interfaces 10, 28517 (2018) [Google Scholar]
  104. X. Zhou et al., Acc. Chem. Res. 52, 3244 (2019) [Google Scholar]
  105. X. Zhou et al., Sci. Adv. 5, eaaw5484 (2019) [Google Scholar]
  106. X. Li et al., Joule 2, 1331 (2018) [Google Scholar]
  107. S. Wu et al., Adv. Eng. Mater. 9, 1970184 (2019) [Google Scholar]
  108. Z. Xu et al., Energy Environ. Sci. 13, 830 (2020) [Google Scholar]
  109. L. Zhang et al., Appl. Energy 266, 114851 (2020) [Google Scholar]
  110. M. Li et al., Environ. Sci.: Nano. 7, 414 (2020) [Google Scholar]
  111. Y. Liu et al., J. Mater. Chem. A 7, 2581 (2019) [Google Scholar]
  112. Y. Guo et al., ACS Nano. 13, 7913 (2019) [Google Scholar]
  113. Y. Zhang et al., ACS Appl. Mater. Interfaces 11, 32559 (2019) [Google Scholar]
  114. C. Song et al., Environ. Sci. Technol. 54, 9025 (2020) [Google Scholar]
  115. K. Yu et al., J. Hazard Mater. 392, 122350 (2020) [Google Scholar]
  116. K. Wang et al., Sol. Energy Mater. Sol. Cells 204, 110203 (2020) [Google Scholar]
  117. L. Li et al., ACS Appl. Mater. Interfaces 12, 32143 (2020) [Google Scholar]
  118. D. Hao et al., ACS Sustain. Chem. Eng. 6, 10789 (2018) [Google Scholar]
  119. H.M. Wilson et al., Desalination 456, 85 (2019) [Google Scholar]
  120. V.-D. Dao, N.H. Vu, H.-S. Choi, J. Power Sources 448, 227388 (2020) [Google Scholar]
  121. P. Xiao et al., Nano Energy 68, 104385 (2020) [Google Scholar]
  122. Q. Zhang et al., Nano Energy 76, 105113 (2020) [Google Scholar]
  123. F.L. Meng et al., Adv. Funct. Mater. 30, 2002867 (2020) [Google Scholar]
  124. P. Yang et al., Energy Environ. Sci. 10, 1923 (2017) [Google Scholar]
  125. X. Li et al., Joule 2, 2477 (2018) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.