Open Access
Issue
Eur. Phys. J. Appl. Phys.
Volume 59, Number 1, July 2012
Article Number 10001
Number of page(s) 21
Section Review Article
DOI https://doi.org/10.1051/epjap/2012120166
Published online 03 August 2012
  1. Y. Mimura, T. Ohkubo, T. Takeuchi, K. Sekikawa, Jpn J. Appl. Phys. 17, 541 (1978) [Google Scholar]
  2. Y. Kawamura, K. Toyoda, S. Namba, Appl. Phys. Lett. 40, 374 (1982) [Google Scholar]
  3. B.G. Burke, T.J. Herlihy Jr., A.B. Spisak, K.A. Williams, Nanotechnology 19, 215301 (2008) [Google Scholar]
  4. M. Zheng, M. Yu, Y. Liu, R. Skomski, S.H. Liou, D.J. Sellmyer, V.N. Petryakov, Yu.K. Verevkin, N.I. Polushkin, N.N. Salashchenko, Appl. Phys. Lett. 79, 2606 (2001) [Google Scholar]
  5. I. Divliansky, T.S. Mayer, K.S. Holliday, V.H. Crespi, Appl. Phys. Lett. 82, 1667 (2003) [Google Scholar]
  6. A. Fernandez, J.Y. Decker, S.M. Herman, D.W. Phillion, D.W. Sweeney, M.D. Perry, J. Vac. Sci. Technol. B 15, 2439 (1997) [CrossRef] [Google Scholar]
  7. J.C. Hulteen, R.P. Van Duyne, J. Vac. Sci. Technol. A 13, 1553 (1995) [Google Scholar]
  8. C.L. Haynes, R.P. Van Duyne, J. Phys. Chem. B 105, 5599 (2001) [Google Scholar]
  9. J.-Y. Shiu, C.-W. Kuo, P. Chen, C.-Y. Mou, Chem. Mater. 16, 561 (2004) [Google Scholar]
  10. M. Park, C. Harrison, P.M. Chaikin, R.A. Register, D.H. Adamson, Science 276, 1401 (1997) [Google Scholar]
  11. J.Y. Cheng, C.A. Ross, V.Z.-H. Chan, E.L. Thomas, R.G.H. Lammertink, G.J. Vancso, Adv. Mat. 13, 1174 (2001) [CrossRef] [Google Scholar]
  12. C. Tang, E.M. Lennon, G.H. Fredrickson, E.J. Kramer, C.J. Hawker, Science 322, 429 (2008) [Google Scholar]
  13. S.Y. Chou, P.R. Krauss, P.J. Renstrom, Appl. Phys. Lett. 67, 3114 (1995) [Google Scholar]
  14. T. Bailey, B.J. Choi, M. Colburn, M. Meissl, S. Shaya, J.G. Ekerdt, S.V. Sreenivasan, C.G. Willson, J. Vac. Sci. Technol. B 18, 3572 (2000) [CrossRef] [Google Scholar]
  15. H. Lee, G.Y. Jung, Microelectron. Eng. 77, 42 (2005) [Google Scholar]
  16. H. Lee, G.Y. Jung, Microelectron. Eng. 77, 168 (2005) [Google Scholar]
  17. H. Lee, S. Hong, K. Yang, K. Choi, Appl. Phys. Lett. 88, 143112 (2006) [Google Scholar]
  18. J.-H. Shin, K.-Y. Yang, K.-S. Han, H.-S. Kim, H. Lee, J. Nanosci. Nanotechnol. 12, 3364 (2012) [CrossRef] [PubMed] [Google Scholar]
  19. S.-H. Hong, K.-S. Han, H. Lee, J.U. Cho, Y.K. Kim, Jpn J. Appl. Phys. 46, 6375 (2007) [Google Scholar]
  20. H.Y. Jung, S.Y. Hwang, B.J. Bae, H. Lee, J. Vac. Sci. Technol. B 27, 1861 (2009) [CrossRef] [Google Scholar]
  21. R.D. Piner, J. Zhu, F. Xu, S. Hong, C.A. Mirkin, Science 283, 661 (1999) [Google Scholar]
  22. B.W. Maynor, Y. Li, J. Liu, Langmuir 17, 2575 (2001) [Google Scholar]
  23. S. Park, H.W. Lee, H. Wang, S. Selvarasah, M.R. Dokmeci, Y.J. Park, S.N. Cha, J.M. Kim, Z. Bao, ACS Nano 6, 2487 (2012) [Google Scholar]
  24. M. Pudas, J. Hagberg, S. Leppävuori, J. Eur. Ceram. Soc. 24, 2943 (2004) [Google Scholar]
  25. W.-X. Huang, S.-H. Lee, H.J. Sung, T.-M. Lee, D.-S. Kim, Int. J. Heat Fluid Flow 29, 1436 (2008) [Google Scholar]
  26. T.-M. Lee, S.-H. Lee, J.-H. Noh, D.-S. Kim, S. Chun, J. Micromech. Microeng. 20, 125026 (2010) [Google Scholar]
  27. C.W. Sele, T. von Werne, R.H. Friend, H. Sirringhaus, Adv. Mat. 17, 997 (2005) [CrossRef] [Google Scholar]
  28. H. Sirringhaus, T. Kawase, R.H. Friend, T. Shimoda, M. Inbasekaran, W. Wu, E.P. Woo, Science 290, 2123 (2000) [Google Scholar]
  29. M. Singh, H.M. Haverinen, P. Dhagat, G.E. Jabbour, Adv. Mat. 22, 673 (2010) [CrossRef] [Google Scholar]
  30. S.Y. Chou, P.R. Krauss, W. Zhang, L. Guo, L. Zhuang, J. Vac. Sci. Technol. B 15, 2897 (1997) [CrossRef] [Google Scholar]
  31. M.D. Austin, H. Ge, W. Wu, M. Li, Z. Yu, D. Wasserman, S.A. Lyon, S.Y. Chou, Appl. Phys. Lett. 84, 5299 (2004) [Google Scholar]
  32. H. Lee, J. Vac. Sci. Technol. B 23, 1102 (2005) [CrossRef] [Google Scholar]
  33. H. Lee, G.Y. Jung, Jpn J. Appl. Phys. 43, 8369 (2004) [Google Scholar]
  34. K.-Y. Yang, J.-W. Kim, K.-J. Byeon, H.-C. Lee, H. Lee, J. Nanosci. Nanotechnol. 9, 4194 (2009) [CrossRef] [PubMed] [Google Scholar]
  35. K.-Y. Yang, K.-M. Yoon, J.-W. Kim, J.-H. Lee, H. Lee, Jpn J. Appl. Phys. 48, 095003 (2009) [Google Scholar]
  36. J.-H. Lee, K.-Y. Yang, S.-H. Hong, H. Lee, K.-W. Choi, Microelectron. Eng. 85, 710 (2008) [Google Scholar]
  37. K.-J. Byeon, K.-Y. Yang, H. Lee, Microelectron. Eng. 84, 1003 (2007) [Google Scholar]
  38. K.-Y. Yang, J.-W. Kim, K.-J. Byeon, H. Lee, Microelectron. Eng. 84, 1552 (2007) [Google Scholar]
  39. S.Y. Chou, C. Keimel, J. Gu, Nature 417, 835 (2002) [Google Scholar]
  40. S.C. Oh, B.J. Bae, K.Y. Yang, M.H. Kwon, H. Lee, Met. Mater. Int. 17, 771 (2011) [CrossRef] [Google Scholar]
  41. J. Taniguchi, Y. Tokano, I. Miyamoto, M. Komuro, H. Hiroshima, Nanotechnology 13, 592 (2002) [Google Scholar]
  42. U. Plachetka, M. Bender, A. Fuchs, B. Vratzov, T. Glinsner, F. Lindner, H. Kurz, Microelectron. Eng. 73–74, 167 (2003) [Google Scholar]
  43. V. Malyarchuk, F. Hua, N.H. Mack, V.T. Velasquez, J.O. White, R.G. Nuzzo, J.A. Rogers, Optic. Express 13, 5669 (2005) [CrossRef] [Google Scholar]
  44. N. Koo, M. Bender, U. Plachetka, A. Fuchs, T. Wahlbrink, J. Bolten, H. Kurz, Microelectron. Eng. 84, 904 (2007) [Google Scholar]
  45. I.W. Moran, A.L. Briseno, S. Loser, K.R. Carter, Chem. Mater. 20, 4595 (2008) [Google Scholar]
  46. J.-W. Kim, K.-Y. Yang, S.-H. Hong, H. Lee, Appl. Surf. Sci. 254, 5607 (2008) [Google Scholar]
  47. J. Zaumseil, M.A. Meitl, J.W.P. Hsu, B.R. Acharya, K.W. Baldwin, Y.-L. Loo, J.A. Rogers, Nano Lett. 3, 1223 (2003) [Google Scholar]
  48. K. Felmet, Y.-L. Loo, Y. Sun, Appl. Phys. Lett. 85, 3316 (2004) [Google Scholar]
  49. N. Kehagias, V. Reboud, G. Chansin, M. Zelsmann, C. Jeppesen, C. Schuster, M. Kubenz, F. Reuther, G. Gruetzner, C.M.S. Torres, Nanotechnology 18, 175303 (2007) [Google Scholar]
  50. H.Y. Jung, K.-S. Han, J.H. Lee, H. Lee, J. Nanosci. Nanotechnol. 9, 4338 (2009) [CrossRef] [PubMed] [Google Scholar]
  51. Y. Xia, G.M. Whitesides, Annu. Rev. Mater. Sci. 28, 153 (1998) [CrossRef] [Google Scholar]
  52. H.-W. Li, B.V.O. Muir, G. Fichet, W.T.S. Huck, Langmuir 19, 1963 (2003) [Google Scholar]
  53. Y. Chen, A. Lebib, S. Li, A. Pépin, D. Peyrade, M. Natali, E. Cambril, Eur. Phys. J. Appl. Phys. 12, 223 (2000) [CrossRef] [EDP Sciences] [Google Scholar]
  54. Y.-T. Hsieh, Y.-C. Lee, J. Micromech. Microeng. 21, 015001 (2011) [Google Scholar]
  55. M.H. Lee, J.Y. Lin, T.W. Odom, Angew. Chem. 122, 3121 (2010) [CrossRef] [Google Scholar]
  56. J.-H. Shin, S.-H. Lee, K.-J. Byeon, K.-S. Han, H. Lee, K. Tsunozaki, Nanoscale Res. Lett. 6, 458 (2011) [CrossRef] [PubMed] [Google Scholar]
  57. S.-H. Hong, J.-Y. Hwang, H. Lee, H.-C. Lee, K.-W. Choi, Microelectron. Eng. 86, 295 (2009) [Google Scholar]
  58. S.-H. Hong, J. Hwang, H. Lee, Nanotechnology 20, 385303 (2009) [CrossRef] [PubMed] [Google Scholar]
  59. J. Hwang, S.-H. Hong, H. Lee, J. Nanosci. Nanotechnol. 9, 3644 (2009) [CrossRef] [PubMed] [Google Scholar]
  60. S.-H. Hong, B.-J. Bae, J.-Y. Hwang, S.-Y. Hwang, H. Lee, Microelectron. Eng. 86, 2423 (2009) [Google Scholar]
  61. Y. Sun, J.H. Seo, C.J. Takacs, J. Seifter, A.J. Heeger, Adv. Mat. 23, 1679 (2011) [CrossRef] [Google Scholar]
  62. A. Elfanaoui, E. Elhamri, L. Boulkaddat, A. Ihlal, K. Bouabid, L. Laanab, A. Taleb, X. Portier, Int. J. Hydrogen Energy 36, 4130 (2011) [Google Scholar]
  63. H. Cho, Y.-H. Yun, Ceram. Int. 37, 615 (2011) [Google Scholar]
  64. H. Wang, M.-H. Xu, J.-W. Xu, M.-F. Ren, L. Yang, J. Mater. Sci.: Mater. Electron. 21, 589 (2010) [CrossRef] [Google Scholar]
  65. D.M. Carvalho, J.L.B. Maciel, L.P. Ravaro, R.E. Garcia, V.G. Ferreira, L.V.A. Scalvi, J. Sol-Gel Sci. Technol. 55, 385 (2010) [CrossRef] [Google Scholar]
  66. H. Kim, P.A. Kohl, J. Power Sources 195, 2224 (2010) [Google Scholar]
  67. B. Weintraub, Z. Zhou, Y. Li, Y. Deng, Nanoscale 2, 1573 (2010) [CrossRef] [PubMed] [Google Scholar]
  68. C. Shang, Z.-P. Liu, J. Am. Chem. Soc. 133, 9938 (2011) [Google Scholar]
  69. C. Levard, B.C. Reinsch, F.M. Miche, C. Oumahi, G.V. Lowry, G.E. Brown Jr., Environ. Sci. Technol. 45, 5260 (2011) [Google Scholar]
  70. Z. Ji, X. Jin, S. George, T. Xia, H. Meng, X. Wang, E. Suarez, H. Zhang, E.M.V. Hoek, H. Godwin, A.E. Nel, J.I. Zink, Environ. Sci. Technol. 44, 7309 (2010) [Google Scholar]
  71. C.O. Metin, L.W. Lake, C.R. Miranda, Q.P. Nguyen, J. Nanopart. Res. 13, 839 (2011) [Google Scholar]
  72. J. Zhu, S. Wei, J. Ryu, L. Sun, Z. Luo, Z. Guo, ACS Appl. Mater. Int. 2, 2100 (2010) [CrossRef] [Google Scholar]
  73. T. Agag, T. Takeichi, Polymer 52, 2757 (2011) [Google Scholar]
  74. Y.J. Kim, S.Y. Park, J.J. Lee, J. Nanosci. Nanotechnol. 10, 3232 (2010) [CrossRef] [PubMed] [Google Scholar]
  75. I. Jung, Y.H. Jo, I. Kim, H.M. Lee, J. Electron. Mater. 41, 115 (2012) [CrossRef] [Google Scholar]
  76. B.T. Anto, S. Sivaramakrishnan, L.-L. Chua, P.K.H. Ho, Adv. Funct. Mater. 20, 296 (2010) [Google Scholar]
  77. R. Shankar, L. Groven, A. Amert, K.W. Whites, J.J. Kellar, J. Mater. Chem. 21, 10871 (2011) [Google Scholar]
  78. J. Kim, S.-I. Na, H.-K. Kim, Solar Energy Mater. Solar Cells 98, 424 (2012) [CrossRef] [Google Scholar]
  79. J. Yao, A.-P. Le, M.V. Schulmerich, J. Maria, T.-W. Lee, S.K. Gray, R. Bhargava, J.A. Rogers, R.G. Nuzzo, ACS Nano 5, 5763 (2011) [Google Scholar]
  80. G.M. Schmid, M.D. Stewart, J. Wetzel, F. Palmieri, J.J. Hao, Y. Nishimura, K. Jen, E.K. Kim, D.J. Resnick, J.A. Liddle, C.G. Willson, J. Vac. Sci. Technol. B 24, 1283 (2006) [CrossRef] [Google Scholar]
  81. S. Bizet, J. Galy, J.-F. Gerard, Macromolecules 39, 2574 (2006) [Google Scholar]
  82. A. Cattoni, E. Cambril, D. Decanini, G. Faini, A.M. Haghiri-Gosnet, Microelectron. Eng. 87, 1015 (2010) [Google Scholar]
  83. C.G. Gamys, E. Beyou, E. Bourgeat-Lami, J. Polym. Sci. Polym. Chem. 48, 784 (2010) [CrossRef] [Google Scholar]
  84. G. Yu, L. Zhu, X. Wang, J. Liu, D. Xu, Micropor. Mesopor. Mater. 130, 189 (2010) [CrossRef] [Google Scholar]
  85. N. Hagura, W. Widiyastuti, F. Iskandar, K. Okuyam, Chem. Eng. J. 156, 200 (2010) [Google Scholar]
  86. S. Dirè, V. Tagliazucca, E. Callone, A. Quaranta, Mater. Chem. Phys. 126, 909 (2011) [Google Scholar]
  87. M. Bender, U. Plachetka, J. Ran, A. Fuchs, B. Vratzov, H. Kurz, T. Glinsner, F. Lindner, J. Vac. Sci. Technol. B 22, 3229 (2004) [CrossRef] [Google Scholar]
  88. F. Peng, J. Liu, J. Li, J. Membr. Sci. 222, 225 (2003) [CrossRef] [Google Scholar]
  89. S. Mishima, H. Kaneoka, T. Nakagawa, J. Appl. Polym. Sci. 71, 273 (1999) [Google Scholar]
  90. S.-J. Choi, P.J. Yoo, S.J. Baek, T.W. Kim, H.H. Lee, J. Am. Chem. Soc. 126, 7744 (2004) [Google Scholar]
  91. E. Kim, Y. Xia, G.M. Whitesides, J. Am. Chem. Soc. 118, 5722 (1996) [Google Scholar]
  92. K.S. Han, S.H. Hong, H. Lee, Appl. Phys. Lett. 91, 123118 (2007) [Google Scholar]
  93. K.-S. Han, S.-H. Hong, J.-H. Jeong, H. Lee, Microelectron. Eng. 87, 610 (2010) [Google Scholar]
  94. X.D. Huang, L.-R. Bao, X. Cheng, L.J. Guo, S.W. Pang, A.F. Yee, J. Vac. Sci. Technol. B 20, 2872 (2002) [CrossRef] [Google Scholar]
  95. M. Li, H. Tan, L. Chen, J. Wang, S.Y. Chou, J. Vac. Sci. Technol. B 21, 660 (2003) [CrossRef] [Google Scholar]
  96. K.-M. Yoon, K.-Y. Yang, H. Lee, Thin Solid Films 518, 126 (2009) [Google Scholar]
  97. L.M. Campos, I. Meinel, R.G. Guino, M. Schierhorn, N. Gupta, G.D. Stucky, C.J. Hawker, Adv. Mat. 20, 3728 (2008) [CrossRef] [Google Scholar]
  98. I.W. Moran, D.F. Cheng, S.B. Jhaveri, K.R. Carter, Soft Matt. 4, 168 (2008) [CrossRef] [Google Scholar]
  99. K.-Y. Yang, K.-M. Yoon, K.-W. Choi, H. Lee, Microelectron. Eng. 86, 2228 (2009) [Google Scholar]
  100. K.-M. Yoon, K.-Y. Yang, H. Lee, H.-S. Kim, J. Vac. Sci. Technol. B 27, 2810 (2009) [CrossRef] [Google Scholar]
  101. C. Goh, K.M. Coakley, M.D. McGehee, Nano Lett. 5, 1545 (2005) [CrossRef] [PubMed] [Google Scholar]
  102. R. Ganesan, J. Dumond, M.S.M. Saifullah, S.H. Lim, H. Hussain, H.Y. Low, ACS Nano 6, 1494 (2012) [Google Scholar]
  103. P.C. Hidber, W. Helbig, E. Kim, G.M. Whitesides, Langmuir 12, 1375 (1996) [Google Scholar]
  104. V. Santhanam, R.P. Andres, Nano Lett. 4, 41 (2004) [Google Scholar]
  105. T. Kraus, L. Malaquin, H. Schmid, W. Riess, N.D. Spencer, H. Wolf, Nature Nanotechnol. 2, 570 (2007) [CrossRef] [Google Scholar]
  106. T.H.J. van Osch, J. Perelaer, A.W.M. de Laat, U.S. Schubert, Adv. Mat. 20, 343 (2008) [CrossRef] [Google Scholar]
  107. E. Tekin, P.J. Smith, U.S. Schubert, Soft Matt. 4, 703 (2008) [CrossRef] [Google Scholar]
  108. Y. Lee, J.-R. Choi, K.J. Lee, N.E. Stott, D. Kim, Nanotechnology 19, 415604 (2008) [CrossRef] [PubMed] [Google Scholar]
  109. F.C. Krebs, M. Jørgensen, K. Norrman, O. Hagemann, J. Alstrup, T.D. Nielsen, J. Fyenbo, K. Larsen, J. Kristensen, Solar Energy Mater. Solar Cells 93, 422 (2009) [CrossRef] [Google Scholar]
  110. F.C. Krebs, J. Fyenbo, M. Jørgensen, J. Mater. Chem. 20, 8994 (2010) [Google Scholar]
  111. A. Sánchez, S. Morante-Zarcero, D. Pérez-Quintanilla, I. Sierra, I. del Hierro, Electrochim. Acta 55, 6983 (2010) [Google Scholar]
  112. S.H. Ko, I. Park, H. Pan, C.P. Grigoropoulos, A.P. Pisano, C.K. Luscombe, J.M.J. Fréchet, Nano Lett. 7, 1869 (2007) [CrossRef] [PubMed] [Google Scholar]
  113. K.-Y. Yang, K.-M. Yoon, S. Lim, H. Lee, J. Vac. Sci. Technol. B 27, 2786 (2009) [CrossRef] [Google Scholar]
  114. M.J. Hampton, J.L. Templeton, J.M. DeSimone, Langmuir 26, 3012 (2010) [CrossRef] [PubMed] [Google Scholar]
  115. H.-H. Park, D.-G. Choi, X. Zhang, S. Jeon, S.-J. Park, S.-W. Lee, S. Kim, K.-D. Kim, J.-H. Choi, J. Lee, D.K. Yun, K.J. Lee, H.-H. Park, R.H. Hill, J.-H. Jeong, J. Mater. Chem. 20, 1921 (2010) [Google Scholar]
  116. S.H. Lim, M.S.M. Saifullah, H. Hussain, W.W. Loh, H.Y. Low, Nanotechnology 21, 285303 (2010) [CrossRef] [PubMed] [Google Scholar]
  117. J.H. Choi, S.W. Lee, K.D. Kim, D.G. Choi, J.H. Jeong, E.S. Lee, Curr. App. Phys. 9, S138 (2009) [CrossRef] [Google Scholar]
  118. J.-H. Choi, S.-W. Lee, J.-H. Jeong, D.-G. Choi, J.-H. Lee, E.-S. Lee, Jpn J. Appl. Phys. 48, 06FH02 (2009) [Google Scholar]
  119. P. Wang, J. Guo, H. Wang, Y. Zhang, J. Wei, J. Phys. Chem. C 113, 8118 (2009) [CrossRef] [Google Scholar]
  120. J.-H. Choi, S.-W. Lee, D.-G. Choi, K.-D. Kim, J.-H. Jeong, E.-S. Lee, J. Vac. Sci. Technol. B 26, 1390 (2008) [CrossRef] [Google Scholar]
  121. S. Matsui, Y. Igaku, H. Ishigaki, J. Fujita, M. Ishida, Y. Ochiai, M. Komuro, H. Hiroshima, J. Vac. Sci. Technol. B 19, 2801 (2001) [CrossRef] [Google Scholar]
  122. Y. Igaku, S. Matsui, H. Ishigaki, J. Fujita, M. Ishida, Y. Ochiai, H. Namatsu, M. Komuro, H. Hiroshima, Jpn J. Appl. Phys. 41, 4198 (2002) [Google Scholar]
  123. Y. Kang, M. Okada, C. Minari, K. Kanda, Y. Haruyama, S. Matsui, Jpn J. Appl. Phys. 49, 06GL13 (2010) [Google Scholar]
  124. K.-I. Nakamatsu, K. Watanabe, K. Tone, H. Namatsu, S. Matsui, J. Vac. Sci. Technol. B 23, 507 (2005) [CrossRef] [Google Scholar]
  125. H.W. Ro, H. Peng, K.-I. Niihara, H.-J. Lee, E.K. Lin, A. Karim, D.W. Gidley, H. Jinnai, D.Y. Yoon, C.L. Soles, Adv. Mat. 20, 1934 (2008) [CrossRef] [Google Scholar]
  126. M. Okinaka, K. Tsukagoshi, Y. Aoyagi, J. Vac. Sci. Technol. B 24, 1402 (2006) [CrossRef] [Google Scholar]
  127. K.-Y. Yang, S.-C. Oh, H. Park, H. Lee, J. Vac. Sci. Technol. B 29, 051602 (2011) [CrossRef] [Google Scholar]
  128. S.Y. Hwang, H.Y. Jung, J.-H. Jeong, H. Lee, Thin Solid Films 517, 4104 (2009) [Google Scholar]
  129. S.-Y. Hwang, S.-H. Hong, H.-Y. Jung, H. Lee, Microelectron. Eng. 86, 642 (2009) [Google Scholar]
  130. S.-H. Hong, K.-S. Han, K.-J. Byeon, H. Lee, K.-W. Choi, Jpn J. Appl. Phys. 47, 3699 (2008) [Google Scholar]
  131. S.-H. Hong, J.-H. Jeong, K.-I. Kim, H. Lee, Microelectron. Eng. 88, 2013 (2011) [Google Scholar]
  132. K.-I. Kim, K.-S. Han, K.-Y. Yang, H.-S. Kim, H. Lee, J. Nanosci. Nanotechnol. 12, 3417 (2012) [CrossRef] [PubMed] [Google Scholar]
  133. H. Lee, S. Hong, K. Yang, K. Choi, Microelectron. Eng. 83, 323 (2006) [Google Scholar]
  134. H.J.H. Chen, J.-R. Jhang, C.-J. Huang, S.-Z. Chen, J.-C. Huang, IEEE Electron Device Lett. 32, 155 (2011) [Google Scholar]
  135. J.-G. Kim, Y. Sim, Y. Cho, J.-W. Seo, S. Kwon, J.-W. Park, H.G. Choi, H. Kim, S. Lee, Microelectron. Eng. 86, 2427 (2009) [Google Scholar]
  136. B.-K. Choo, J.-S. Choi, S.-W. Kim, K.-C. Park, J. Jang, J. Non-Cryst. Solids 352, 1704 (2006) [CrossRef] [Google Scholar]
  137. D. Cui, H. Li, H. Park, X. Cheng, J. Vac. Sci. Technol. B 26, 2404 (2008) [CrossRef] [Google Scholar]
  138. C. Auner, U. Palfinger, H. Gold, J. Kraxner, A. Haase, T. Haber, M. Sezen, W. Grogger, G. Jakopic, J.R. Krenn, G. Leising, B. Stadlober, Org. Electr. 10, 1466 (2009) [CrossRef] [Google Scholar]
  139. B. Stadlober, U. Haas, H. Gold, A. Haase, G. Jakopic, G. Leising, N. Koch, S. Rentenberger, E. Zojer, Adv. Funct. Mater. 17, 2687 (2007) [Google Scholar]
  140. W.-D. Li, S.Y. Chou, Optic. Express 18, 931 (2010) [CrossRef] [Google Scholar]
  141. S.-W. Ahn, K.-D. Lee, J.-S. Kim, S.H. Kim, J.-D. Park, S.-H. Lee, P.-W. Yoon, Nanotechnology 16, 1874 (2005) [Google Scholar]
  142. S.H. Kim, J.-D. Park, K.-D. Lee, Nanotechnology 17, 4436 (2006) [Google Scholar]
  143. K.-J. Byeon, S.-Y. Hwang, H. Lee, Appl. Phys. Lett. 91, 091106 (2007) [Google Scholar]
  144. J.-Y. Kim, M.-K. Kwon, K.-S. Lee, S.-J. Park, S.H. Kim, K.-D. Lee, Appl. Phys. Lett. 91, 181109 (2007) [Google Scholar]
  145. M.-G. Kang, L.J. Guo, Adv. Mat. 19, 1391 (2007) [CrossRef] [Google Scholar]
  146. S. Jeon, J.-W. Kang, H.-D. Park, J.-J. Kim, J.R. Youn, J. Shim, J.-H. Jeong, D.-G. Choi, K.-D. Kim, A.O. Altun, S.-H. Kim, Y.-H. Lee, Appl. Phys. Lett. 92, 223307 (2008) [Google Scholar]
  147. K.-J. Byeon, E.-J. Hong, H. Park, J.-Y. Cho, S.-H. Lee, J. Jhin, J.H. Baek, H. Lee, Thin Solid Films 519, 2241 (2011) [Google Scholar]
  148. K.-J. Byeon, J.-Y. Cho, J. Kim, H. Park, H. Lee, Optic. Express 20, 11423 (2012) [CrossRef] [Google Scholar]
  149. E.-J. Hong, K.-J. Byeon, H. Park, J. Hwang, H. Lee, K. Choi, H.-S. Kim, Solid-State Electron. 53, 1099 (2009) [CrossRef] [Google Scholar]
  150. K.-J. Byeon, H. Park, J.-Y. Cho, S.-H. Lee, S.Y. Lee, J.O. Song, H. Lee, Curr. App. Phys. 11, S147 (2011) [CrossRef] [Google Scholar]
  151. H. Park, K.-J. Byeon, J.-J. Jang, O. Nam, H. Lee, Microelectron. Eng. 88, 3207 (2011) [Google Scholar]
  152. J.-Y. Cho, K.-J. Byeon, H. Park, H.-S. Kim, H. Lee, Jpn J. Appl. Phys. 49, 102103 (2010) [Google Scholar]
  153. O. Hellwig, J.K. Bosworth, E. Dobisz, D. Kercher, T. Hauet, G. Zeltzer, J.D. Risner-Jamtgaard, D. Yaney, R. Ruiz, Appl. Phys. Lett. 96, 052511 (2010) [Google Scholar]
  154. Q. Dong, G. Li, C.-L. Ho, M. Faisal, C.-W. Leung, P.W.-T. Pong, K. Liu, B.-Z. Tang, I. Manners, W.-Y. Wong, Adv. Mat. 24, 1034 (2012) [CrossRef] [Google Scholar]
  155. S.-H. Hong, H. Lee, Y. Choi, Y.-K. Lee, Curr. App. Phys. 11, S16 (2011) [CrossRef] [Google Scholar]
  156. B.-J. Bae, S.-H. Hong, S.-Y. Hwang, J.-Y. Hwang, K.-Y. Yang, H. Lee, Semicond. Sci. Technol. 24, 075016 (2009) [Google Scholar]
  157. S.-H. Hong, B.-J. Bae, H. Lee, J.-H. Jeong, Microelectron. Eng. 87, 2081 (2010) [Google Scholar]
  158. M. Meier, S. Gilles, R. Rosezin, C. Schindler, S. Trellenkamp, A. Rüdiger, D. Mayer, C. Kügeler, R. Waser, Microelectron. Eng. 86, 1060 (2009) [Google Scholar]
  159. H.Y. Jeong, J.Y. Lee, S.-Y. Choi, Adv. Funct. Mater. 20, 3912 (2010) [Google Scholar]
  160. K.-Y. Yang, J.-W. Kim, S.-H. Hong, J.-Y. Hwang, H. Lee, Thin Solid Films 518, 5662 (2010) [Google Scholar]
  161. K.-Y. Yang, S.-H. Hong, D.-K. Kim, B.-K. Cheong, H. Lee, Microelectron. Eng. 84, 21 (2007) [Google Scholar]
  162. H. Lee, S.-H. Hong, K.-Y. Yang, G.-Y. Jung, Microelectron. Eng. 84, 573 (2007) [Google Scholar]
  163. S.-H. Hong, B.-J. Bae, H. Lee, Nanotechnology 21, 025703 (2010) [CrossRef] [PubMed] [Google Scholar]
  164. D.-H. Ko, J.R. Tumbleston, A. Gadisa, M. Aryal, Y. Liu, R. Lopez, E.T. Samulski, J. Mater. Chem. 21, 16293 (2011) [Google Scholar]
  165. W. Zeng, K.S.L. Chong, H.Y. Low, E.L. Williams, T.L. Tam, A. Sellinger, Thin Solid Films 517, 6833 (2009) [Google Scholar]
  166. C. Battaglia, J. Escarre, K. Söderström, L. Erni, L. Ding, G. Bugnon, A. Billet, M. Boccard, L. Barraud, S. De Wolf, F.-J. Haug, M. Despeisse, C. Ballif, Nano Lett. 11, 661 (2011) [CrossRef] [PubMed] [Google Scholar]
  167. K. Söderström, J. Escarré, O. Cubero, F.-J. Haug, S. Perregaux, C. Ballif, Prog. Photovolt. Res. Appl. 19, 202 (2011) [CrossRef] [Google Scholar]
  168. V.E. Ferry, M.A. Verschuuren, H.B.T. Li, R.E.I. Schropp, H.A. Atwater, A. Polman, Appl. Phys. Lett. 95, 183503 (2009) [Google Scholar]
  169. M.-Y. Ke, C.-Y. Wang, L.-Y. Chen, H.-H. Chen, H.-L. Chiang, Y.-W. Cheng, M.-Y. Hsieh, C.-P. Chen, J.J. Huang, IEEE J. Sel. Top. Quantum Electron. 15, 1242 (2009) [Google Scholar]
  170. J.-J. Chen, Y.-K. Su, IEEE Photonics Technol. Lett. 22, 383 (2010) [Google Scholar]
  171. H. Park, K.-J. Byeon, K.-Y. Yang, J.-Y. Cho, H. Lee, Nanotechnology 21, 355304 (2010) [CrossRef] [PubMed] [Google Scholar]
  172. S.J. An, J.H. Chae, G.-C. Yi, G.H. Park, Appl. Phys. Lett. 92, 121108 (2008) [Google Scholar]
  173. K.S. Kim, S.-M. Kim, H. Jeong, M.S. Jeong, G.Y. Jung, Adv. Funct. Mater. 20, 1076 (2010) [Google Scholar]
  174. S. Tripathy, S.L. Teo, V.K.X. Lin, M.F. Chen, A. Dadgar, J. Christen, A. Krost, Phys. Status Solidi C 7, 88 (2010) [CrossRef] [Google Scholar]
  175. H. Yu, J. Yu, F. Sun, Z. Li, S. Chen, Opt. Commun. 271, 241 (2007) [Google Scholar]
  176. D.-H. Kim, C.-O Cho, Y.-G. Roh, H. Jeon, Y.S. Park, J. Cho, J.S. Im, C. Sone, Y. Park, W.J. Choi, Q-H. Park, Appl. Phys. Lett. 87, 203508 (2005) [Google Scholar]
  177. I.B. Divliansky, A. Shishido, I.-C. Khoo, T.S. Mayer, D. Pena, S. Nishimura, C.D. Keating, T.E. Mallouk, Appl. Phys. Lett. 79, 3392 (2001) [Google Scholar]
  178. S.-I. Na, G.-Y. Ha, D.-S. Han, S.-S. Kim, J.-Y. Kim, J.-H. Lim, D.-J. Kim, K.-I. Min, S.-J. Park, IEEE Photonics Technol. Lett. 18, 1512 (2006) [Google Scholar]
  179. Y. Jung, K.H. Baik, F. Ren, S.J. Pearton, J. Kim, J. Electrochem. Soc. 157, H676 (2010) [Google Scholar]
  180. K.-M. Yoon, K.-Y. Yang, K.-J. Byeon, H. Lee, Solid-State Electron. 54, 484 (2010) [CrossRef] [Google Scholar]
  181. S.-H. Lee, K.-J. Byeon, H. Park, J.-Y. Cho, K.-Y. Yang, H. Lee, Microelectron. Eng. 88, 3278 (2011) [Google Scholar]
  182. K.-Y. Yang, S.-C. Oh, J.-Y. Cho, K.-J. Byeon, H. Lee, J. Electrochem. Soc. 157, H1067 (2010) [Google Scholar]
  183. J.-Y. Cho, K.-J. Byeon, H. Park, J. Kim, H.-S. Kim, H. Lee, Nanoscale Res. Lett. 6, 578 (2011) [CrossRef] [PubMed] [Google Scholar]
  184. K.-Y. Yang, K.-S. Han, H. Lee, J. Electrochem. Soc. 158, K141 (2011) [Google Scholar]
  185. K.-S. Han, H. Lee, D. Kim, H. Lee, Solar Energy Mater. Solar Cells 93, 1214 (2009) [CrossRef] [Google Scholar]
  186. K.-S. Han, J.-H. Shin, H. Lee, Solar Energy Mater. Solar Cells 94, 583 (2010) [CrossRef] [Google Scholar]
  187. K.-S. Han, J.-H. Shin, W.-Y. Yoon, H. Lee, Solar Energy Mater. Solar Cells 95, 288 (2011) [CrossRef] [Google Scholar]
  188. K.-S. Han, J.-H. Shin, K.-I. Kim, H. Lee, Jpn J. Appl. Phys. 50, 020207 (2011) [Google Scholar]
  189. J.-H. Shin, K.-S. Han, H. Lee, Prog. Photovolt. Res. Appl. 19, 339 (2011) [CrossRef] [Google Scholar]
  190. S.-H. Hong, B.-J. Bae, K.-S. Han, E.-J. Hong, H. Lee, K.-W. Choi, Electron. Mater. Lett. 5, 39 (2009) [CrossRef] [Google Scholar]
  191. B.-J. Bae, S.-H. Hong, E.-J. Hong, H. Lee, G.-Y. Jung, Jpn J. Appl. Phys. 48, 010207 (2009) [Google Scholar]
  192. S.-H. Lee, K.-S. Han, J.-H. Shin, S.-Y. Hwang, H. Lee, Prog. Photovolt. Res. Appl. (to be published) [Google Scholar]
  193. A. Bessonov, Y. Cho, S.-J. Jung, E.-A. Park, E.-S. Hwang, J.-W. Lee, M. Shin, S. Lee, Solar Energy Mater. Solar Cells 95, 2886 (2011) [CrossRef] [Google Scholar]
  194. J. Escarré, C. Battaglia, K. Söderström, C. Pahud, R. Biron, O. Cubero, F.-J. Haug, C. Ballif, J. Opt. 14, 024009 (2012) [Google Scholar]
  195. V.E. Ferry, M.A. Verschuuren, M.C. van Lare, R.E.I. Schropp, H.A. Atwater, A. Polman, Nano Lett. 11, 4239 (2011) [CrossRef] [PubMed] [Google Scholar]
  196. H. Spanggaard, F.C. Krebs, Solar Energy Mater. Solar Cells 83, 125 (2004) [Google Scholar]
  197. D. Cheyns, K. Vasseur, C. Rolin, J. Genoe, J. Poortmans, P. Heremans, Nanotechnology 19, 424016 (2008) [CrossRef] [PubMed] [Google Scholar]
  198. X. He, F. Gao, G. Tu, D.G. Hasko, S. Hüttner, N.C. Greenham, U. Steiner, R.H. Friend, W.T.S. Huck, Adv. Funct. Mater. 21, 139 (2011) [Google Scholar]
  199. D. Chen, W. Zhao, T.P. Russell, ACS Nano 6, 1479 (2012) [Google Scholar]
  200. P. Thébault, S. Niedermayer, S. Landis, N. Chaix, P. Guenoun, J. Daillant, X. Man, D. Andelman, H. Orland, Adv. Mat. 24, 1952 (2012) [CrossRef] [Google Scholar]
  201. X. Man, D. Andelman, H. Orland, P. Thébault, P.-H. Liu, P. Guenoun, J. Daillant, S. Landis, Macromolecules 44, 2206 (2011) [Google Scholar]
  202. S.-M. Park, X. Liang, B.D. Harteneck, T.E. Pick, N. Hiroshiba, Y. Wu, B.A. Helms, D.L. Olynick, ACS Nano 5, 8523 (2011) [Google Scholar]
  203. S. Kim, D.O. Shin, D.-G. Choi, J.-R. Jeong, J.H. Mun, Y.-B. Yang, J.U. Kim, S.O. Kim, J.-H. Jeong, Small 8, 1563 (2012) [Google Scholar]
  204. T. Mårtensson, P. Carlberg, M. Borgström, L. Montelius, W. Seifert, L. Samuelson, Nano Lett. 4, 699 (2004) [Google Scholar]
  205. H. Jeong, K.S. Kim, Y.H. Kim, H. Jeong, H. Song, K.H. Lee, M.S. Jeong, D. Wang, G.Y. Jung, Nanotechnology 22, 275310 (2011) [CrossRef] [PubMed] [Google Scholar]
  206. A. Pierret, M. Hocevar, S.L. Diedenhofen, R.E. Algra, E. Vlieg, E.C. Timmering, M.A. Verschuuren, G.W.G. Immink, M.A. Verheijen, E.P.A.M. Bakkers, Nanotechnology 21, 065305 (2010) [CrossRef] [PubMed] [Google Scholar]
  207. H. Ko, Z. Zhang, K. Takei, A. Javey, Nanotechnology 21, 295305 (2010) [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.