Issue |
Eur. Phys. J. Appl. Phys.
Volume 59, Number 2, August 2012
|
|
---|---|---|
Article Number | 20403 | |
Number of page(s) | 8 | |
Section | Nanomaterials and Nanotechnologies | |
DOI | https://doi.org/10.1051/epjap/2012120250 | |
Published online | 03 September 2012 |
https://doi.org/10.1051/epjap/2012120250
Higher water splitting hydrogen generation rate for single crystalline anatase phase of TiO2 nanotube arrays
School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal, Seberang Perai Selatan, Pulau Pinang, Malaysia
a e-mail: srimala@eng.usm.my
Received:
25
June
2012
Revised:
2
August
2012
Accepted:
3
August
2012
Published online:
3
September
2012
This paper presents a detailed investigation on the effect of heat-treatment process on the highly ordered titanium dioxide (TiO2) nanotube arrays in connection with the photoelectrochemical (PEC) response and hydrogen evolution rate. TiO2 nanotube arrays have been systematically heat-treated to control the transformation of as-anodized TiO2 amorphous structure to crystalline anatase and rutile phases. In this study, single crystalline TiO2 anatase phase exhibited a higher PEC response and hydrogen evolution rate at 400 °C heat treatment. The photocurrent density increase was mainly attributed to the effective transport of photo-induced electrons within the single crystal anatase phase. However, polycrystalline anatase and rutile phases showed the fluctuation in lower photocurrent density upon heat treatment above 500 °C. The mobility of photo-induced electrons was obviously hindered due to the recombination losses in defect sites between the anatase and rutile phase.
© EDP Sciences, 2012
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.