Open Access
Issue
Eur. Phys. J. Appl. Phys.
Volume 100, 2025
Article Number 12
Number of page(s) 5
DOI https://doi.org/10.1051/epjap/2025012
Published online 06 May 2025
  1. R.S. Ningthoujam, N.S. Gajbhiye, Synthesis, electron transport properties of transition metal nitrides and applications, Prog. Mater. Sci. 70, 50 (2015) [CrossRef] [Google Scholar]
  2. H. Wang, J. Li, K. Li, Y. Lin, J. Chen, L. Gao, V. Nicolosi, X. Xiao, J.-M. Lee, Transition metal nitrides for electrochemical energy applications, Chem. Soc. Rev. 50, 1354 (2021) [CrossRef] [PubMed] [Google Scholar]
  3. A. Achille, F. Mauvy, S. Fourcade, D. Michau, M. Cavarroc, A. Poulon-Quintin, Electrochemical behavior of tantalum nitride protective layers for PEMFC application, Energies 17, 5099 (2024) [CrossRef] [Google Scholar]
  4. Z.-G. Yang, H.-M. Xu, T.-Y. Shuai, Q.-N. Zhan, Z.-J. Zhang, K. Huang, C. Dai, G. Li, Recent progress in the synthesis of transition metal nitride catalysts and their applications in electrocatalysis, Nanoscale 15, 11777 (2023) [CrossRef] [PubMed] [Google Scholar]
  5. Z. Cheng, W. Qi, C.H. Pang, T. Thomas, T. Wu, S. Liu, M. Yang, Recent advances in transition metal nitride-based materials for photocatalytic applications, Adv. Funct. Mater. 31, 2100553 (2021) [CrossRef] [Google Scholar]
  6. J.L. Qi, L.P. Wang, Y. Zhang, X. Guo, W.Q. Yu, Q.H. Wang, K. Zhang, P. Ren, M. Wen, Amorphous AlN nanolayer thickness dependent toughness, thermal stability and oxidation resistance in TaN/AlN nanomultilayer films, Surf. Coat. Technol. 405, 126724 (2021) [CrossRef] [Google Scholar]
  7. S. Tsukimoto, M. Moriyama, M. Murakami, Microstructure of amorphous tantalum nitride thin films, Thin Solid Films 460, 222 (2004) [CrossRef] [Google Scholar]
  8. M. Alishahi, F. Mahboubi, S.M. Mousavi Khoie, M. Aparicio, E. López-Elvira, J. Méndez, R. Gago, Structural properties and corrosion resistance of tantalum nitride coatings produced by reactive DC magnetron sputtering, RSC Adv. 6, 89061 (2016) [CrossRef] [Google Scholar]
  9. S. Atmane, A. Maroussiak, A. Caillard, A.-L. Thomann, M. Kateb, J.T. Gudmundsson, P. Brault, Role of sputtered atom and ion energy distribution in films deposited by physical vapor deposition: A molecular dynamics approach, J. Vac. Sci. Technol. A 42, 060401 (2024) [CrossRef] [PubMed] [Google Scholar]
  10. M. Kateb, H. Hajihoseini, J.T. Gudmundsson, S. Ingvarsson, Role of ionization fraction on the surface roughness, density, and interface mixing of the films deposited by thermal evaporation, DC magnetron sputtering, and HiPIMS: An atomistic simulation, J. Vac. Sci. Technol. A 37, 031306 (2019) [CrossRef] [Google Scholar]
  11. D. Lundin, T. Minea, J.T. Gudmundsson, High power impulse magnetron sputtering: Fundamentals, technologies, challenges and applications (Elsevier, 2019) [Google Scholar]
  12. J. Fischer, M. Renner, J.T. Gudmundsson, M. Rudolph, H. Hajihoseini, N. Brenning, D. Lundin, Insights into the copper HiPIMS discharge: Deposition rate and ionised flux fraction, Plasma Sources Sci. Technol. 32, 125006 (2023) [CrossRef] [Google Scholar]
  13. S. Amaya-Roncancio, D.F. Arias-Mateus, M.M. Gómez-Hermida, J.C. Riaño-Rojas, E. Restrepo-Parra, Molecular dynamics simulations of the temperature effect in the hardness on Cr and CrN films, Appl. Surf. Sci. 258, 4473 (2012) [CrossRef] [Google Scholar]
  14. S.S. Firouzabadi, K. Dehghani, M. Naderi, F. Mahboubi, Numerical investigation of sputtering power effect on nano-tribological properties of tantalum-nitride film using molecular dynamics simulation, Appl. Surf. Sci. 367, 197 (2016) [CrossRef] [Google Scholar]
  15. M. Nikravesh, G.H. Akbari, A. Poladi, A comprehensive study on the surface tribology of Ta thin film using molecular dynamics simulation: The effect of TaN interlayer, power and temperature, Tribol. Int. 105, 185 (2017) [CrossRef] [Google Scholar]
  16. X.W. Zhou, R.A. Johnson, H.N.G. Wadley, Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers, Phys. Rev. B 69, 144113 (2004) [Google Scholar]
  17. P. Brault, A.-L. Thomann, M. Cavarroc, Theory and molecular simulations of plasma sputtering, transport and deposition processes, Eur. Phys. J. D 77, 19 (2023) [CrossRef] [Google Scholar]
  18. A. Hecimovic, K. Burcalova, A.P. Ehiasarian, Origins of ion energy distribution function (IEDF) in high power impulse magnetron sputtering (HiPIMS) plasma discharge, J. Phys. D: Appl. Phys. 41, 035204 (2008) [Google Scholar]
  19. A.P. Thompson, H.M. Aktulga, R. Berger, D.S. Bolintineanu, W.M. Brown, P.S. Crozier, P.J. in 't Veld, A. Kohlmeyer, S.G. Moore, T.D. Nguyen, R. Shan, M.J. Stevens, J. Tranchida, C. Trott, S.J. Plimpton, LAMMPS − a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales, Comput. Phys. Commun. 271, 108171 (2022) [CrossRef] [Google Scholar]
  20. LAMMPS software homepage (2023). Available at: https://www.lammps.org [Google Scholar]
  21. S.P. Coleman, D.E. Spearot, L. Capolungo, Virtual diffraction analysis of Ni [010] symmetric tilt grain boundaries, Model. Simul. Mater. Sci. Eng. 21, 055020 (2013) [CrossRef] [Google Scholar]
  22. A. Stukowski, Visualization and analysis of atomistic simulation data with OVITO − The Open Visualization Tool, Model. Simul. Mater. Sci. Eng. 18, 015012 (2009) [Google Scholar]
  23. OVITO software homepage. Available at: https://www.ovito.org [Google Scholar]
  24. P.M. Larsen, S. Schmidt, J. Schiøtz, Robust structural identification via polyhedral template matching, Model. Simul. Mater. Sci. Eng. 24, 055007 (2016) [CrossRef] [Google Scholar]
  25. J.T. Gudmundsson, Ionization mechanism in the high power impulse magnetron sputtering (HiPIMS) discharge, J. Phys.: Conf. Ser. 100, 082013 (2008) [CrossRef] [Google Scholar]
  26. C.M. Koller, H. Marihart, H. Bolvardi, S. Kolozsvári, P.H. Mayrhofer, Structure, phase evolution, and mechanical properties of DC, pulsed DC, and high power impulse magnetron sputtered Ta-N films, Surf. Coat. Technol. 347, 304 (2018) [CrossRef] [Google Scholar]
  27. A. Jain, S.P. Ong, G. Hautier, W. Chen, W.D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, K.A. Persson, Commentary: The Materials Project: A materials genome approach to accelerating materials innovation, APL Mater. 1, 011002 (2013) [CrossRef] [Google Scholar]
  28. Materials Project software homepage. Available at: https://next-gen.materialsproject.org [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.