Free Access
Issue
Eur. Phys. J. Appl. Phys.
Volume 82, Number 2, May 2018
Article Number 20801
Number of page(s) 18
Section Plasma, Discharges and Processes
DOI https://doi.org/10.1051/epjap/2018180074
Published online 15 August 2018
  1. G.C. Montanari, IEEE Electr. Insul. Mag. 29, 34 (2013) [CrossRef] [Google Scholar]
  2. R.A. Fouracre, S.J. MacGregor, F.A. Tuema, An investigation into the mechanisms of surface discharges, in 12th Int. Pulsed Power Conf. (IPPC), 1999, p. 1380 [CrossRef] [Google Scholar]
  3. A. Cavalini, F. Ciani, G.C. Montanari, The effect of space charge on phenomenology of partial discharges in insulation cavities, in IEEE Ann. Rep. Conf. Electr. Insul. Dielec. Phen., 2005, p. 410 [Google Scholar]
  4. D. Yu, M. Farzaneh, J. Zhang, L. Shu, W. Sima, C. Sun, IEEE Trans. Dielec. Electr. Insul. 14, 1427 (2007) [CrossRef] [Google Scholar]
  5. M. Mahdipour, A. Akbari, P. Werle, IEEE Trans. Dielec. Electr. Insul. 24, 817 (2017) [CrossRef] [Google Scholar]
  6. T.G. Engel, M. Kristiansen, IEEE Trans. Plasma Sci. 37, 1863 (2009) [CrossRef] [Google Scholar]
  7. Z. Aydogmus, M. Cebeci, IEEE Trans. Dielec. Electr. Insul. 11, 577 (2004) [CrossRef] [Google Scholar]
  8. M. Albano, R.T. Waters, P. Charalampidis, H. Griffiths, A. Haddad, IEEE Trans. Dielec. Electr. Insul. 23, 304 (2016) [CrossRef] [Google Scholar]
  9. J. Crespo-Sandoval, A. Haddad, H. Griffiths, P.F. Coventry, IEEE Trans. Dielec. Electr. Insul. 17, 1772 (2010) [CrossRef] [Google Scholar]
  10. S.M. Rowland, R. Schurch, M. Pattouras, Q. Li, IEEE Trans. Dielec. Electr. Insul. 22, 1537 (2015) [CrossRef] [Google Scholar]
  11. F. Mauseth, E. Ildstad, M. Ytterstad, R. Hegerberg, B. Sanden, M. Jeroense, J.E. Skog, Quality control of HVDC extruded cables: electrical treeing in XLPE under different voltage stresses, in Proc. 16th Int. Symp. High Volt. Eng., 2009, ISBN 978-0-620-44584–9 [Google Scholar]
  12. X. Chen, Y. Xu, X. Cao, S.M. Gubanski, IEEE Trans. Dielec. Electr. Insul. 23, 103 (2016) [Google Scholar]
  13. D. Shakti Prasad, B. Subba Reddy, IEEE Trans. Dielec. Electr. Insul. 24, 75 (2017) [CrossRef] [Google Scholar]
  14. S. Pancheshnyi, Plasma Sources Sci. Technol. 24, 1 (2015) [Google Scholar]
  15. S. Farokhi, M. Farzaneh, I. Fofana, J. Phys. D: Appl. Phys. 43, 1 (2010) [CrossRef] [Google Scholar]
  16. P.N. Mavroidis, P.N. Mikropoulos, C.A. Stassinopoulos, M. Zinonos, Impulse breakdown of short rod-plane gaps with a rod covered different dielectric materials, in Proc. 16th Int. Symp. High Volt. Eng. (SAIEE), 2009, pp. 1 [Google Scholar]
  17. L.A. Lazaridis, P.N. Mikropoulos, IET Sci. Meas. Technol. 4, 63 (2010) [CrossRef] [Google Scholar]
  18. I. Fofana, A. Beroual, A. Boubakeur, Influence of insulating barriers on positive long air gaps in divergent field, in 11th Int. Symp. High Volt. Eng., 1999, p. 321 [Google Scholar]
  19. Y. Ding, F. Lv, Z. Zhang, C. Liu, J. Geng, Q. Xie, IEEE Trans. Plasma. Sci. 44, 2615 (2016) [CrossRef] [Google Scholar]
  20. M.A. Douar, A. Beroual, X. Souche, IET Gener. Transm. Distr. 12, 1417 (2018) [Google Scholar]
  21. M.A. Douar, A. Beroual, X. Souche, IET Gener. Transm. Distr. 12, 1429 (2018) [Google Scholar]
  22. L. Kebbabi, A. Beroual, IEEE Trans. Dielec. Electr. Insul. 13, 565 (2006) [CrossRef] [Google Scholar]
  23. N. Dhahbi-Megriche, A. Beroual, IEEE Trans. Dielec. Electr. Insul., 23, 2899 (2016) [CrossRef] [Google Scholar]
  24. I. Fofana, Modélisation de la décharge positive dans les grands intervalles d’air, Ph.D. Thesis, Ecole Centrale de Lyon, France, 1996 [Google Scholar]
  25. A. Beroual, M.-L. Coulibaly, O. Aitken, A. Girodet, IET Gen. Trans. Distr. 6, 951 (2012) [CrossRef] [Google Scholar]
  26. H. Okubo, M. Kanegami, M. Hikita, Y. Kito, IEEE Trans. Dielec. Electr. Insul. 1, 294 (1994) [CrossRef] [Google Scholar]
  27. M.-L. Coulibaly, A. Beroual, O. Aitken, A. Girodet, Int. Conf. High Volt. Eng. Appl. (ICHVE), 24, (2008) [Google Scholar]
  28. M.-L. Coulibaly, A. Beroual, O. Aitken, A. Girodet, Experimental characterization of creeping discharges over solid/gas and solid/gaseous mixture interfaces under lightning impulse voltage, in 17th Int. Conf. Gas. Disch. Appl. (ICGD), 2008, pp. 265 [Google Scholar]
  29. A. Beroual, M.-L. Coulibaly, O. Aitken, Girodet, A. Study of creeping discharges propagating over epoxy resin insulators in presence of different gas mixtures, in Int. Conf. High Volt. Eng. Appl. (ICHVE), 2010, pp. 89 [CrossRef] [Google Scholar]
  30. A. Beroual, M.-L. Coulibaly, Fractal analysis of creeping discharges propagating over solid insulators immersed in gases at different pressures, in IEEE Conf.Electr. Insul. Dielec. Phen. (CEIDP), 2012, pp. 335 [Google Scholar]
  31. A. Beroual, A. Kebbabi, IEEE Trans. Dielec. Electr. Insul. 16, 1574 (2009) [CrossRef] [Google Scholar]
  32. M.A. Douar, A. Beroual, X. Souche, Propagation of creeping discharges in air depending on the electric field direction and insulator materials under lightning impulse voltage, in IEEE Conf.Electr. Insul. Dielec. Phen. (CEIDP), 2015, pp. 880 [Google Scholar]
  33. Y.V. Serdyuk, A. Larsson, S.M. Gubanski, M. Akyuz, J. Phys. D: Appl. Phys. 34, 614 (2001) [CrossRef] [Google Scholar]
  34. N. Liu, S. Célestin, A. Bourdon, V.P. Pasko, P. Ségur, E. Marode, Appl. Phys. Lett., AIP, 91, 112501-1 (2007) [Google Scholar]
  35. N.Y. Liu, V.P. Pasko, J. Geophys. Res. 109, (2004). DOI:10.1029/2003JA010064 [Google Scholar]
  36. L.B. Loeb, Science 148, 1417 (1965) [CrossRef] [PubMed] [Google Scholar]
  37. M.I. D’yakonov, V.Y. Kashorovskii, J. Exp. Theo. Phys. 67, 1049 (1988) [Google Scholar]
  38. G.A. Dawson, W.P. Winn, Zeit. Phyz., 183, 159 (1965) [CrossRef] [Google Scholar]
  39. X. Zhang, S.M. Rowland, IEEE Trans. Dielec. Electr. Insul. 19, 2055 (2012) [CrossRef] [Google Scholar]
  40. R. Genin, J. Phys. Radium, 17, 571 (1956) [CrossRef] [EDP Sciences] [Google Scholar]
  41. I. Gallimberti, J. Phys. D: Appl. Phys. 5, 2179 (1972) [CrossRef] [Google Scholar]
  42. N.L. Allen, A. Ghaffar, J. Phys. D: Appl. Phys. 28, 331 (1995) [CrossRef] [Google Scholar]
  43. A.A. Kulikovsky, J. Phys. D: Appl. Phys. 30, 441 (1997) [CrossRef] [Google Scholar]
  44. S. Rauf, M.J. Kushner, 1998. The consequence of cell geometry and gas mixture on plasma display panel performance, in IEEE Int. Conf. Plasma Sci. Raleigh (NC), USA, pp. 124. [Google Scholar]
  45. N.L. Aleksandrov, E.M. azelyan, J. Phys. D: Appl. Phys. 29, 740 (1996) [CrossRef] [Google Scholar]
  46. T.M.P. riels, E.M. Van Veldhuizen, U. Ebert, IEEE Trans. Plasma. Sci. 36, 908 (2008) [CrossRef] [Google Scholar]
  47. N.C. Jaintly, T.S. Sudarshan, IEEE Trans. Dielec. Electr. Insul. 23, 261 (1988) [CrossRef] [Google Scholar]
  48. T. Asokan, T. Sudarshan, IEEE Trans. Dielec. Electr. Insul. 27, 1040 (1992) [CrossRef] [Google Scholar]
  49. R.G. Bommakanti, T.S. Sudarshan, J. Appl. Phys., 66, 2091 (1989) [CrossRef] [Google Scholar]
  50. S. Grzybowski, J.E. Thompson, E. Kuffel, IEEE Trans. Electr. Insul. 18, 301 (1983) [CrossRef] [Google Scholar]
  51. F. Hegeler, G. Masten, H. Krompholz, L.L. Hatfield, IEEE Trans. Plasma Sci., 21, 223 (2002) [CrossRef] [Google Scholar]
  52. F.W. Peek, Dielectric Phenomena in High Voltage Engineering (McGraw Hill Comp. Inc., New York, 1915) 1st edn. [Google Scholar]
  53. I. Gallimberti, G. Bacchiega, A. Bondieou-Clergerie, P. Lalande, C. R. Phys. 3, 1335 (2002) [CrossRef] [Google Scholar]
  54. N.L. Allen, P.N. Mikropoulos, J. Phys. D: Appl. Phys. 32, 913 (1999) [CrossRef] [Google Scholar]
  55. J.J. Lowke, IEEE Trans. Plas. Sci. 32, 4 (2004) [CrossRef] [Google Scholar]
  56. G.V. Naidis, J. Phys. D. Appl. Phys. 30, 1214 (1997) [CrossRef] [Google Scholar]
  57. G.V. Naidis, J. Phys. D: Appl. Phys. 29, 779 (1996) [CrossRef] [Google Scholar]
  58. N.Y. Babaeva, G.V. Naidis, IEEE Trans. Plasma Sci. 26, 41 (1998) [CrossRef] [Google Scholar]
  59. M. Akyuz, L. Gao, V. Cooray, T.G. Gustavsson, S.M. Gubanski, A. Larsson, IEEE Trans. Dielec. Electr. Insul. 8, 902 (2001) [CrossRef] [Google Scholar]
  60. X. Meng, H. Mei, C. Chen, L. Wang, Z. Guan, J. Zhou, IEEE Trans. Dielec. Electr. Insul. 22, 1193 (2015) [CrossRef] [Google Scholar]
  61. G.V. Naidis, Tech. Phys. Lett. 23, 493 (1997) [CrossRef] [Google Scholar]
  62. N.Y. Babaeva, G.V. Naidis, IEEE Trans. Plasma Sci. 25, 375 (1997) [CrossRef] [Google Scholar]
  63. A.V. Chvyreva, Creeping sparks: a study on surface discharges development. Ph.D. dissertation, T.U. Eindhoven, Holland, 2016 [Google Scholar]
  64. A. Xiao, S.M. Rowland, X. Tu, J.-C. Whitehead, IEEE Trans. Dielec. Electr. Insul. 21, 2466 (2014) [CrossRef] [Google Scholar]
  65. C. Perrier, A. Beroual, J.-L. Bessede, IEEE Trans. Dielectr. Electr. Insul. 13, 556 (2006) [CrossRef] [Google Scholar]
  66. M. El-A. Slama, Etude expérimentale et modélisation de l’influence de la constitution chimique et de la répartition de la pollution sur le contournement des isolateurs haute tension, Ph.D. Thesis, Ecole Centrale de Lyon, France, 2011 [Google Scholar]
  67. https://fr.wikipedia.org/wiki/Masse_volumique_de_l%27air [Google Scholar]
  68. htps://www.thermalfluidscentral.org/encyclopedia/index.php/thermophysical_Properties:Air_at_1_atm [Google Scholar]
  69. M.El-A. Slama, A. Beroual, H. Hadi, Electro-thermal model of DC flashover discharges of polluted insulator, in 18th Int. Symp. High Volt. Eng. (ISH), 2013, pp. OE3–02. [Google Scholar]
  70. M. El-A. Slama, A. Beroual, H. Hadi, Experimental characterization and mathematical modelling of surface flashover of solid insulator in air, in 19th Int. Symp. High Volt. Eng. (ISHVE), 2015, p. 1 [Google Scholar]
  71. N. Dhahbi-Megriche, A. Beroual, L. Krähenbühl, J. Phys. D: Appl. Phys. 30, 889 (1997) [CrossRef] [Google Scholar]
  72. https://www.engineeringtoolbox.com/dry-air-properties-d_973.html [Google Scholar]
  73. http://thermopedia.com/content/553/ [Google Scholar]
  74. H. Yahyaoui, P. Nothingher, S. Agnel, Y. Kieffel, A. Girodet. Analysis of conduction mechanisms in alumina-filled epoxy resin under dc field and temperature, in IEEE Ann.Rep. Conf. Electr. Insul. Dielec. Phen. (CEIDP), 2013, 667 [Google Scholar]
  75. T. Vu-Cong, A. Beroual, A. Girodet, P. Vinson, Time constant evaluation of transient AC−DC field distribution, in 19th Int. Symp. High Volt. Eng. (ICHVE), 2015 [Google Scholar]
  76. G.R.G. Raju, Electrical conduction in aromatic polyamides, in Proc. 19th Electr.Electro. Insul. Conf. (EEIC/ICWA), 78, 1989 [Google Scholar]
  77. A. Rahmani, A. Boubakeur, S.A.A. Boumaza, A. Mekhaldi, M. Matallah, Arch. Electr. Eng. 58, 97 (2009) [Google Scholar]
  78. E. Kantar, D. Panagiotopoulos, E. Ilstad, IEEE Trans. Dielec. Electr. Insul. 23, 1778 (2016) [CrossRef] [Google Scholar]
  79. S. Orlowska, A. Beroual, J. Fleszynski, J. Phys. D: Appl. Phys. 35, 1 (2002) [CrossRef] [Google Scholar]
  80. S. Célestin, Study of the dynamics of streamer in air at atmospheric pressure. Ph.D. dissertation, École Centrale de Paris, France, 2008 [Google Scholar]
  81. A. Luque, U. Ebert, W. Hundsdorfer, Phys. Rev. Lett. 101, 75005-1 (2008) [Google Scholar]
  82. K. Kumar, R.E. Robson, Aust. J. Phys. 26, 157 (1973), (NASA Astrophysics Data System) [CrossRef] [Google Scholar]
  83. M.S. Benilov, G.V. Naidis, J. Phys. D: Appl. Phys. 43, 175204 (2010) [CrossRef] [Google Scholar]
  84. A. Medjdoub, A. Boubakeur, ‘Influence of electrical aging on the properties of cross-linked polyethylene use as electrical insulation on underground power cables, in IEEE Conf.Power Tech. (PTC), 2005, p. 1 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.