Issue |
Eur. Phys. J. Appl. Phys.
Volume 80, Number 1, October 2017
|
|
---|---|---|
Article Number | 10903 | |
Number of page(s) | 13 | |
Section | Physics of Energy Transfer, Conversion and Storage | |
DOI | https://doi.org/10.1051/epjap/2017160422 | |
Published online | 13 October 2017 |
https://doi.org/10.1051/epjap/2017160422
Regular Article
Theoretical and experimental study of a wireless power supply system for moving low power devices in ferromagnetic and conductive medium
GeePs Laboratory, CENTRALESUPELEC-CNRS-UPSud-UPMC,
Gif-sur-Yvette, France
* e-mail: yves.bernard@u-psud.fr
Received:
10
November
2016
Received in final form:
2
May
2017
Accepted:
22
September
2017
Published online: 13 October 2017
This paper focuses on the design of a wireless power supply system for low power devices (e.g. sensors) located in harsh electromagnetic environment with ferromagnetic and conductive materials. Such particular environment could be found in linear and rotating actuators. The studied power transfer system is based on the resonant magnetic coupling between a fixed transmitter coil and a moving receiver coil. The technique was utilized successfully for rotary machines. The aim of this paper is to extend the technique to linear actuators. A modeling approach based on 2D Axisymmetric Finite Element model and an electrical lumped model based on the two-port network theory is introduced. The study shows the limitation of the technique to transfer the required power in the presence of ferromagnetic and conductive materials. Parametric and circuit analysis were conducted in order to design a resonant magnetic coupler that ensures good power transfer capability and efficiency. A design methodology is proposed based on this study. Measurements on the prototype show efficiency up to 75% at a linear distance of 20 mm.
© EDP Sciences, 2017
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.