Open Access
Issue |
Eur. Phys. J. Appl. Phys.
Volume 99, 2024
|
|
---|---|---|
Article Number | 28 | |
Number of page(s) | 13 | |
DOI | https://doi.org/10.1051/epjap/2024240025 | |
Published online | 23 October 2024 |
- N. Bonnet, N. Brun, C. Colliex, Extracting information from sequences of spatially resolved EELS spectra using multivariate statistical analysis, Ultramicroscopy 77, 97 (1999), https://doi.org/10.1016/S0304-3991(99)00042-X [CrossRef] [Google Scholar]
- F. de la Peña, M.-H. Berger, J.-F. Hochepied, F. Dynys, O. Stephan, M. Walls, Mapping titanium and tin oxide phases using EELS: an application of independent component analysis, Ultramicroscopy 111, 169 (2011), https://doi.org/10.1016/j.ultramic.2010.10.001 [CrossRef] [PubMed] [Google Scholar]
- N. Dobigeon, N. Brun, Spectral mixture analysis of EELS spectrum-images, Ultramicroscopy 120, 25 (2012), https://doi.org/10.1016/j.ultramic.2012.05.006 [CrossRef] [PubMed] [Google Scholar]
- J.M. Bioucas-Dias, A. Plaza, N. Dobigeon et al., Hyperspectral unmixing overview: Geometrical, statistical, and sparse regression-based approaches, IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 5, 354 (2012), https://doi.org/10.1109/JSTARS.2012.2194696 [CrossRef] [Google Scholar]
- S. Turner, R. Egoavil, M. Batuk et al., Site-specific mapping of transition metal-oxygen coordination in complex oxides, Appl. Phys. Lett. 101, 241910 (2012), https://doi.org/10.1063/1.4770512 [CrossRef] [Google Scholar]
- L. Ma, Y. Liu, X. Zhang, Y. Ye, G. Yin, B.A. Johnson, Deep learning in remote sensing applications: a meta-analysis and review, ISPRS J. Photogramm. Remote Sens. 152, 166 (2019), https://doi.org/10.1016/j.isprsjprs.2019.04.015 [CrossRef] [Google Scholar]
- L. Zhang, L. Zhang, B. Du, Deep learning for remote sensing data: a technical tutorial on the state of the art, IEEE Geosci. Remote Sens. Mag. 4, 22 (2016), https://doi.org/10.1109/MGRS.2016.2540798 [CrossRef] [Google Scholar]
- A. Signoroni, M. Savardi, A. Baronio, S. Benini, Deep learning meets hyperspectral image analysis: a multidisciplinary review, J. Imag. 5, 52 (2019), https://doi.org/10.3390/jimaging5050052 [CrossRef] [Google Scholar]
- X.X. Zhu, D. Tuia, L. Mou et al., Deep learning in remote sensing: a review, IEEE Geosci. Remote Sens. Mag. 5, 8 (2017), https://doi.org/10.1109/MGRS.2017.2762307 [CrossRef] [MathSciNet] [Google Scholar]
- O. Ronneberger, P. Fischer, T. Brox, U-Net: convolutional networks for biomedical image segmentation, in Medical Image Computing and Computer-Assisted Intervention − MICCAI 2015. MICCAI 2015. Lecture Notes in Computer Science, edited by N. Navab, J. Hornegger, W. Wells, A. Frangi (Springer, Cham, 2015), vol 9351. https://doi.org/10.1007/978-3-319-24574-4_28 [Google Scholar]
- N. Audebert, B. Le Saux, S. Lefèvre, Deep learning for classification of hyperspectral data: a comparative review, IEEE Geosci. Remote Sens. Mag. 7, 159 (2019), https://doi.org/10.1109/MGRS.2019.2912563 [CrossRef] [Google Scholar]
- M. Wang, M. Zhao, J. Chen, S. Rahardja, Nonlinear unmixing of hyperspectral data via deep autoencoder networks, IEEE Geosci. Remote Sens. Lett. 16, 1467 (2019), https://doi.org/10.1109/LGRS.2019.2900733 [CrossRef] [Google Scholar]
- M. Zhao, M. Wang, J. Chen, S. Rahardja, Hyperspectral Unmixing via Deep Autoencoder Networks for a Generalized Linear-Mixture/Nonlinear-Fluctuation Model, arXiv:1904.13017, https://doi.org/10.48550/arXiv.1904.13017 [Google Scholar]
- M. Zhao, M. Wang, J. Chen, S. Rahardja, Hyperspectral unmixing for additive nonlinear models with a 3-D-CNN autoencoder network, IEEE Trans. Geosci. Remote Sens. 60, 1 (2021), https://doi.org/10.1109/TGRS.2021.3098745 [CrossRef] [Google Scholar]
- S. Shi, M. Zhao, L. Zhang, J. Chen, Variational autoencoders for hyperspectral unmixing with endmember variability, in ICASS P 2021–2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (Toronto, ON, Canada, 2021), p. 1875, https://doi.org/10.1109/ICASSP39728.2021.9414940. [Google Scholar]
- H. Li, R.A. Borsoi, T. Imbiriba, P. Closas, J.C. Bermudez, D. Erdoğmuş, Model-based deep autoencoder networks for nonlinear hyperspectral unmixing, IEEE Geosci. Remote Sens. Lett. 19, 1 (2021), https://doi.org/10.1109/LGRS.2021.3075138 [Google Scholar]
- S. Ozkan, B. Kaya, G.B. Akar, Endnet: Sparse autoencoder network for endmember extraction and hyperspectral unmixing, IEEE Trans. Geosci. Remote Sens. 57, 482 (2018), https://doi.org/10.1109/TGRS.2018.2856929 [Google Scholar]
- Y. Su, A. Marinoni, J. Li, J. Plaza, P. Gamba, Stacked nonnegative sparse autoencoders for robust hyperspectral unmixing, IEEE Geosci. Remote Sens. Lett. 15, 1427 (2018), https://doi.org/10.1109/LGRS.2018.2841400 [CrossRef] [Google Scholar]
- Y. Su, J. Li, A. Plaza, A. Marinoni, P. Gamba, S. Chakravortty, DAEN: deep autoencoder networks for hyperspectral unmixing, IEEE Trans. Geosci. Remote Sens. 57, 4309 (2019), https://doi.org/10.1109/TGRS.2018. 2890633 [CrossRef] [Google Scholar]
- S. Zhang, Y. Su, X. Xu, J. Li, C. Deng, A. Plaza, Recent advances in hyperspectral unmixing using sparse techniques and deep learning, in Hyperspectral Image Analysis, edited by S. Prasad, J. Chanussot (Springer, 2020), p. 377, https://doi.org/10.1007/978-3-030-38617-7_13 [Google Scholar]
- Y. Qu, H. Qi, uDAS: An untied denoising autoencoder with sparsity for spectral unmixing, IEEE Trans. Geosci. Remote Sens. 57, 1698 (2018), https://doi.org/10.1109/TGRS.2018.2868690 [Google Scholar]
- F. Palsson, J. Sigurdsson, J.R. Sveinsson, M.O. Ulfarsson, Neural network hyperspectral unmixing with spectral information divergence objective, in 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS) (Fort Worth, TX, USA, 2017), p. 755, https://doi.org/10.1109/IGARSS.2017.8127062. [Google Scholar]
- B. Palsson, J. Sigurdsson, J.R. Sveinsson, M. O. Ulfarsson, Hyperspectral unmixing using a neural network autoencoder, IEEE Access 6, 25646 (2018), https://doi.org/10.1109/ACCESS.2018.2818280 [CrossRef] [Google Scholar]
- B. Palsson, J.R. Sveinsson, M.O. Ulfarsson, Spectral-spatial hyperspectral unmixing using multitask learning, IEEE Access 7, 148861 (2019), https://doi.org/10.1109/ACCESS.2019.2944072 [CrossRef] [Google Scholar]
- B. Palsson, M.O. Ulfarsson, J. R. Sveinsson, Convolutional autoencoder for spectral-spatial hyperspectral unmixing, IEEE Trans. Geosci. Remote Sens. 59, 535 (2021), https://doi.org/10.1109/TGRS.2020.2992743 [CrossRef] [Google Scholar]
- M. Zhao, S. Shi, J. Chen, N. Dobigeon, A 3-d-cnnframework for hyperspectral unmixing with spectral variability, IEEE Trans. Geosci. Remote Sens. 60, 1 (2022), https://doi.org/10.1109/TGRS.2022.3141387 [CrossRef] [Google Scholar]
- S. Shi, L. Zhang, Y. Altmann, J. Chen, Deep generative model for spatial-spectral unmixing with multiple endmember priors, IEEE Trans. Geosci. Remote Sens. 60, 1 (2022), https://doi.org/10.1109/TGRS.2022.3168712 [CrossRef] [Google Scholar]
- P. Ghosh, S.K. Roy, B. Koirala, B. Rasti, P. Scheunders, Hyperspectral unmixing using transformer network, IEEE Trans. Geosci. Remote Sens. 60, 1 (2022), https://doi.org/10.1109/TGRS.2022.3196057 [CrossRef] [Google Scholar]
- B. Palsson, J.R. Sveinsson, M.O. Ulfarsson, Blind hyperspectral unmixing using autoencoders: a critical comparison, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 15, 1340 (2022), https://doi.org/10.1109/JSTARS.2021. 3140154 [CrossRef] [Google Scholar]
- HyperSpy: Multi-dimensional data analysis toolbox — HyperSpy, https://doi.org/10.5281/zenodo.592838. Available: https://hyperspy.org/index.html (visited on 09/28/2022) [Google Scholar]
- J.M.P. Nascimento, J.M.B. Dias, Vertex component analysis: a fast algorithm to unmix hyperspectral data, IEEE Trans. Geosci. Remote Sens. 43, 898 (2005), https://doi.org/10.1109/TGRS.2005.844293 [CrossRef] [Google Scholar]
- N. Dobigeon, S. Moussaoui, M. Coulon, J.-Y. Tourneret, A.O. Hero, Joint Bayesian endmember extraction and linear unmixing for hyperspectral imagery, IEEE Trans. Signal Process. 57, 4355 (2009), https://doi.org/10.1109/TSP.2009.2025797 [CrossRef] [MathSciNet] [Google Scholar]
- L. Miao, H. Qi, Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factorization, IEEE Trans. Geosci. Remote Sens. 45, 765 (2007), https://doi.org/10.1109/TGRS.2006.888466 [CrossRef] [Google Scholar]
- R. Arenal, F. de la Peña, O. Stéphan et al., Extending the analysis of EELS spectrum-imaging data, from elemental to bond mapping in complex nanostructures, Ultramicroscopy 109, 32 (2008), https://doi.org/10.1016/j.ultramic.2008.07.005 [CrossRef] [PubMed] [Google Scholar]
- C.I. Chang, Q. Du, Estimation of number of spectrally distinct signal sources in hyperspectral imagery, IEEE Trans. Geosci. Remote Sens. 42, 608 (2004), https://doi.org/10.1109/TGRS.2003.819189 [CrossRef] [Google Scholar]
- F. Pedregosa, G. Varoquaux, A. Gramfort et al., Scikit-learn: machine learning in Python, J. Mach. Learn. Res. 12, 2825 (2011) [MathSciNet] [Google Scholar]
- N. Bonnet, D. Nuzillard, Independent component analysis: a new possibility for analysing series of electron energy loss spectra, Ultramicroscopy 102, 327 (2005), https://doi.org/10.1016/j.ultramic.2004.11.003 [CrossRef] [PubMed] [Google Scholar]
- J.M.P. Nascimento, J.M.B. Dias, Independent component analysis applied to unmixing hyperspectral data, Proc. SPIE 5238, 306 (2004), https://doi.org/10.1117/12.510652 [CrossRef] [Google Scholar]
- A. Hyvärinen, E. Oja, Independent component analysis: algorithms and applications, Neural Netw. 13, 411 (2000), https://doi.org/10.1016/S0893-6080(00)00026-5 [CrossRef] [Google Scholar]
- I. Palacio, A. Celis, M.N. Nair et al., Atomic structure of epitaxial graphene sidewall nanoribbons: flat graphene, miniribbons, and the confinement gap, Nano Lett. 15, 182 (2015), https://doi.org/10.1021/nl503352v [CrossRef] [PubMed] [Google Scholar]
- M. Duchamp, M. Lachmann, C. Boothroyd et al., Compositional study of defects in microcrystalline silicon solar cells using spectral decomposition in the scanning transmission electron microscope, Appl. Phys. Lett. 102, 133902 (2013), https://doi.org/10.1063/1.4800569 [CrossRef] [Google Scholar]
- Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning applied to document recognition, Proc. IEEE 86, 2278 (1998), https://doi.org/10.1109/5.726791 [CrossRef] [Google Scholar]
- W. Legrand, Y. Sassi, F. Ajejas et al., Spatial extent of the dzyaloshinskii-moriya interaction at metallic interfaces, Phys. Rev. Mater. 6, 024408 (2022), https://doi.org/10.1103/PhysRevMaterials.6.024408 [CrossRef] [Google Scholar]
- D. Muller, Ruthenium Bulk M2,3 and M4,5, Appl. Phys. Group @ Cornell. [Online] Available: https://muller.research.engineering.cornell.edu/spectra/ruthenium-bulk-m23-and-m45/ (visited on 02/24/2023) [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.