Open Access
Issue
Eur. Phys. J. Appl. Phys.
Volume 99, 2024
Article Number 13
Number of page(s) 13
DOI https://doi.org/10.1051/epjap/2024230213
Published online 25 April 2024
  1. P.J. Bruggeman, F. Iza, R. Brandenburg, Foundations of atmospheric pressure non-equilibrium plasmas, Plasma Sources Sci. Technol. 26, 123002 (2017). https://doi.org/10.1088/1361-6595/aa97af [Google Scholar]
  2. M. López et al., A review on non-thermal atmospheric plasma for food preservation: mode of action, determinants of effectiveness, and applications, Front. Microbiol. 10, 622 (2019). https://doi.org/10.3389/fmicb.2019.00622 [CrossRef] [Google Scholar]
  3. G. Divya Deepak, Review on recent advances in cold plasma technology, Eur. Phys. J. Appl. Phys. 97, 39 (2022). https://doi.org/10.1051/epjap/2022210275 [CrossRef] [EDP Sciences] [Google Scholar]
  4. M. Domonkos, P. Tichá, J. Trejbal, P. Demo, Applications of cold atmospheric pressure plasma technology in medicine, agriculture and food industry, Appl. Sci. 11, 4809 (2021). https://doi.org/10.3390/app11114809 [CrossRef] [Google Scholar]
  5. A.K. Martusevich, A.V. Surovegina, I.V. Bocharin, V.V. Nazarov, I.A. Minenko, M. Yu. Artamonov, Cold argon athmospheric plasma for biomedicine: biological effects, applications and possibilities, Antioxidants 11, 1262 (2022). https://doi.org/10.3390/antiox11071262 [CrossRef] [PubMed] [Google Scholar]
  6. F. Judée, J. Vaquero, S. Guégan, L. Fouassier, T. Dufour, Atmospheric pressure plasma jets applied to cancerology: correlating electrical configuration with in vivo toxicity and therapeutic efficiency, J. Phys. D. 52, 245201 (2019). https://doi.org/10.1088/1361-6463/ab0fbb [CrossRef] [Google Scholar]
  7. M. Mateu-Sanz, M.-P. Ginebra, J. Tornín, C. Canal, Cold atmospheric plasma enhances doxorubicin selectivity in metastasic bone cancer, Free Radic. Biol. Med. 189, 32 (2022). https://doi.org/10.1016/j.freeradbiomed.2022.07.007 [CrossRef] [Google Scholar]
  8. R. Limanowski, D. Yan, L. Li, M. Keidar, Preclinical cold Aatmospheric plasma cancer treatment, Cancers 14, 3461 (2022). https://doi.org/10.3390/cancers14143461 [CrossRef] [PubMed] [Google Scholar]
  9. A.C. Borges et al., Applications of cold atmospheric pressure plasma in dentistry, Appl. Sci. 11, 1975 (2021). https://doi.org/10.3390/app11051975 [CrossRef] [Google Scholar]
  10. S. Bekeschus, B. Poschkamp, J. van der Linde, Medical gas plasma promotes blood coagulation via platelet activation, Biomaterials 278, 120433 (2021). https://doi.org/10.1016/j.biomaterials.2020.120433 [CrossRef] [PubMed] [Google Scholar]
  11. T. Bernhardt, M.L. Semmler, M. Schäfer, S. Bekeschus, S. Emmert, L. Boeckmann, Plasma medicine: applications of cold atmospheric pressure plasma in dermatology, Oxid. Med. Cell. Longev. 2019, 1 (2019). https://doi.org/10.1155/2019/3873928 [CrossRef] [Google Scholar]
  12. T. Maho et al., Anti-bacterial action of plasma multi-jets in the context of chronic wound healing, Appl. Sci. 11, 9598 (2021). https://doi.org/10.3390/app11209598 [CrossRef] [Google Scholar]
  13. S. Bekeschus, T. von Woedtke, S. Emmert, A. Schmidt, Medical gas plasma-stimulated wound healing: evidence and mechanisms, Redox Biol. 46, 102116 (2021). https://doi.org/10.1016/j.redox.2021.102116 [CrossRef] [Google Scholar]
  14. D.B. Graves, The emerging role of reactive oxygen and nitrogen species in redox biology and some implications for plasma applications to medicine and biology, J. Phys. D 45, 263001 (2012). https://doi.org/10.1088/0022-3727/45/26/263001 [CrossRef] [Google Scholar]
  15. A. Soneja, M. Drews, T. Malinski, Role of nitric oxide, nitroxidative and oxidative stress in wound healing, Pharmacol. Rep. 12, 108 ( 2005) [Google Scholar]
  16. R. Foresti, M.G. Bani-Hani, R. Motterlini, Use of carbon monoxide as a therapeutic agent: promises and challenges, Intensive Care Med. 34, 649 (2008). https://doi.org/10.1007/s00134-008-1011-1 [CrossRef] [PubMed] [Google Scholar]
  17. L.D. Prockop, R.I. Chichkova, Carbon monoxide intoxication: an updated review, J. Neurol. Sci. 262, 122 (2007). https://doi.org/10.1016/j.jns.2007.06.037 [CrossRef] [Google Scholar]
  18. E. Carbone, C. Douat, Carbon monoxide in plasma medicine and agriculture: just a foe or a potential friend?, Plasma Med. 8, 93 (2018). https://doi.org/10.1615/PlasmaMed.2018024519 [CrossRef] [Google Scholar]
  19. R. Motterlini, L.E. Otterbein, The therapeutic potential of carbon monoxide, Nat. Rev. Drug. Discov. 9, 728 (2010). https://doi.org/10.1038/nrd3228 [CrossRef] [PubMed] [Google Scholar]
  20. S. Minegishi et al., Detection and removal of endogenous carbon monoxide by selective and cell-permeable hemoprotein model complexes, J. Am. Chem. Soc. 139, 5984 (2017). https://doi.org/10.1021/jacs.7b02229 [CrossRef] [PubMed] [Google Scholar]
  21. R. Motterlini, R. Foresti, Biological signaling by carbon monoxide and carbon monoxide-releasing molecules, Am. J. Physiol. Cell Physiol. 312, C302 (2017). https://doi.org/10.1152/ajpcell.00360.2016 [CrossRef] [PubMed] [Google Scholar]
  22. B.E. Mann, R. Motterlini, CO and NO in medicine, Chem. Commun. 4197 (2007). https://doi.org/10.1039/B704873D [Google Scholar]
  23. A. Fridman, Plasma Chem. 5, 260 (2008) [CrossRef] [Google Scholar]
  24. M.A.K. Khalil, R.A. Rasmussen, The global cycle of carbon monoxide: trends and mass balance, Chemosphere 20, 227 (1990). https://doi.org/10.1016/0045-6535(90)90098-E [CrossRef] [Google Scholar]
  25. R. Snoeckx, A. Bogaerts, Plasma technology ? a novel solution for CO2 conversion?, Chem. Soc. Rev. 46, 5805 (2017). https://doi.org/10.1039/C6CS00066E [Google Scholar]
  26. F. Brehmer, S. Welzel, M.C.M. van de Sanden, R. Engeln, CO and byproduct formation during CO2 reduction in dielectric barrier discharges, J. Appl. Phys. 116, 123303 (2014). https://doi.org/10.1063/1.4896132 [CrossRef] [Google Scholar]
  27. C. Douat, P. Escot Bocanegra, S. Dozias, É. Robert, R. Motterlini, Production of carbon monoxide from a He/CO2 plasma jet as a new strategy for therapeutic applications, Plasma Process. Polym. 18, 9 (2021). https://doi.org/10.1002/ppap.202100069 [CrossRef] [Google Scholar]
  28. A. Sobota, O. Guaitella, A. Rousseau, The influence of the geometry and electrical characteristics on the formation of the atmospheric pressure plasma jet, Plasma Sources Sci. Technol. 23, 025016 (2014). https://doi.org/10.1088/0963-0252/23/2/025016 [CrossRef] [Google Scholar]
  29. J. Benedikt, V. Raballand, A. Yanguas-Gil, K. Focke, A. von Keudell, Thin film deposition by means of atmospheric pressure microplasma jet, Plasma Phys. Control. Fusion 49, B419 (2007). https://doi.org/10.1088/0741-3335/49/12B/S39 [CrossRef] [Google Scholar]
  30. I.P. Raĭzer, Gas Discharge Physics (Springer, Berlin, 1997) [Google Scholar]
  31. T. Yoshinaga, H. Akashi, Effects of metastable atoms on breakdown voltage in Argon DBD, J. Phys.: Conf. Ser. 441, 012013 (2013). https://doi.org/10.1088/1742-6596/441/1/012013 [CrossRef] [Google Scholar]
  32. A.A. Knizhnik et al., Experimental study of the process of inner treatment of porous polylactide in a pulsed DBD, AIP Adv. 11, 095302 (2021). https://doi.org/10.1063/5.0059564 [CrossRef] [Google Scholar]
  33. G.D. Deepak, N.K. Joshi, R. Prakash, U. Pal, Electrical characterization of argon and nitrogen based cold plasma jet, Eur. Phys. J. Appl. Phys. 83, 20801 (2018). https://doi.org/10.1051/epjap/2018180057 [CrossRef] [EDP Sciences] [Google Scholar]
  34. D.Y. Kim, S.J. Kim, H.M. Joh, T.H. Chung, Characterization of an atmospheric pressure plasma jet array and its application to cancer cell treatment using plasma activated medium, Phys. Plasmas 25, 073505 (2018). https://doi.org/10.1063/1.5037249 [CrossRef] [Google Scholar]
  35. J. Kriegseis, B. Möller, S. Grundmann, C. Tropea, Capacitance and power consumption quantification of dielectric barrier discharge (DBD) plasma actuators, J. Electrostat. 69, 302 (2011). https://doi.org/10.1016/j.elstat.2011.04.007 [CrossRef] [Google Scholar]
  36. T. Teschner, R. Bansemer, K.-D. Weltmann, Investigation of power transmission of a helium plasma jet to different dielectric targets considering operating modes, T. Gerling, Plasma 2, 348 (2019). https://doi.org/10.3390/plasma2030027 [CrossRef] [Google Scholar]
  37. S. Ponduri, R. Engeln, M.M. Becker, S. Welzel, M.C.M. van de Sanden, D. Loffhagen, Fluid modelling of CO2 dissociation in a dielectric barrier discharge, J. Appl. Phys. 119, 093301 (2016). https://doi.org/10.1063/1.4941530 [CrossRef] [Google Scholar]
  38. G.V. Naidis, Modelling of streamer propagation in atmospheric-pressure helium plasma jets, Modelling of streamer propagation in atmospheric-pressure helium plasma jets, J. Phys. D 43, 402001 (2010). https://doi.org/10.1088/0022-3727/43/40/402001 [CrossRef] [Google Scholar]
  39. B. Niermann, M. Böke, N. Sadeghi, J. Winter, Space resolved density measurements of argon and helium metastable atoms in radio-frequency generated He-Ar micro-plasmas, Eur. Phys. J. D 60, 489 (2010). https://doi.org/10.1140/epjd/e2010-00166-8 [CrossRef] [Google Scholar]
  40. F. Massines, A. Rabehi, P. Decomps, R.B. Gadri, P. Ségur, C. Mayoux, Experimental and theoretical study of a glow discharge at atmospheric pressure controlled by dielectric barrier, J. Appl. Phys. 83, 2950 (1998). https://doi.org/10.1063/1.367051 [CrossRef] [Google Scholar]
  41. J.M. Williamson, D.D. Trump, P. Bletzinger, B.N. Ganguly, Comparison of high-voltage ac and pulsed operation of a surface dielectric barrier discharge, J. Phys. D 39, 4400 (2006). https://doi.org/10.1088/0022-3727/39/20/016 [CrossRef] [Google Scholar]
  42. P. Bletzinger, B.N. Ganguly, The effect of displacement current on fast-pulsed dielectric barrier discharges, J. Phys. D 36, 1550 (2003). https://doi.org/10.1088/0022-3727/36/13/318 [CrossRef] [Google Scholar]
  43. G.J.M. Hagelaar, L.C. Pitchford, Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models, Plasma Sources Sci. Technol. 14, 722 (2005). https://doi.org/10.1088/0963-0252/14/4/011 [NASA ADS] [CrossRef] [Google Scholar]
  44. A.V. Phelps et al., Phelps database. www.lxcat.net/Phelps [Google Scholar]
  45. T. Darny, J.-M. Pouvesle, V. Puech, C. Douat, S. Dozias, E. Robert, Analysis of conductive target influence in plasma jet experiments through helium metastable and electric field measurements, Plasma Sources Sci. Technol. 26, 045008 (2017). https://doi.org/10.1088/1361-6595/aa5b15 [CrossRef] [Google Scholar]
  46. D. Breden, K. Miki, L.L. Raja, Self-consistent two-dimensional modeling of cold atmospheric-pressure plasma jets/bullets, Plasma Sources Sci. Technol. 21, 034011 (2012). https://doi.org/10.1088/0963-0252/21/3/034011 [CrossRef] [Google Scholar]
  47. X.-J. Shao, N. Jiang, G.-J. Zhang, Z. Cao, Comparative study on the atmospheric pressure plasma jets of helium and argon, Appl. Phys. Lett. 101, 253509, (2012). https://doi.org/10.1063/1.4772639 [Google Scholar]
  48. A. Bogaerts et al., The 2020 plasma catalysis roadmap, J. Phys. D 53, 443001 (2020). https://doi.org/10.1088/1361-6463/ab9048 [CrossRef] [Google Scholar]
  49. U. Goebel, J. Wollborn, Carbon monoxide in intensive care medicine—time to start the therapeutic application?!, ICMx 8, 2 (2020). https://doi.org/10.1186/s40635-020-0292-8 [CrossRef] [Google Scholar]
  50. C. Stewig, S. Schüttler, T. Urbanietz, M. Böke, A. von Keudell, Excitation and dissociation of CO2 heavily diluted in noble gas atmospheric pressure plasma, J. Phys. D. 53, 125205 (2020). https://doi.org/10.1088/1361-6463/ab634f [CrossRef] [Google Scholar]
  51. R. Aerts, T. Martens, A. Bogaerts, Influence of vibrational states on CO2 splitting by dielectric barrier discharges, J. Phys. Chem. C 116, 23257 (2012). https://doi.org/10.1021/jp307525t [CrossRef] [Google Scholar]
  52. C. Douat, I. Kacem, N. Sadeghi, G. Bauville, M. Fleury, V. Puech, Space-time resolved density of helium metastable atoms in a nanosecond pulsed plasma jet: influence of high voltage and pulse frequency, J. Phys. D 49, 285204 (2016). https://doi.org/10.1088/0022-3727/49/28/285204 [CrossRef] [Google Scholar]
  53. W.M. Haynes, D.R. Lide, T.J. Bruno, CRC Handbook of Chemistry and Physics 97th ed. (CRC Press, 2016). https://doi.org/10.1201/9781315380476 [Google Scholar]
  54. R. Aerts, W. Somers, A. Bogaerts, Carbon Dioxide Splitting in a Dielectric Barrier Discharge Plasma: A Combined Experimental and Computational Study, Chem. Sus. Chem. 8, 702 (2015). https://doi.org/10.1002/cssc.201402818 [CrossRef] [PubMed] [Google Scholar]
  55. K. McKay, J.-S. Oh, J.L. Walsh, J.W. Bradley, Mass spectrometric diagnosis of an atmospheric pressure helium microplasma jet, J. Phys. D 46, 464018 (2013). https://doi.org/10.1088/0022-3727/46/46/464018 [Google Scholar]
  56. T. Darny, J.-M. Pouvesle, J. Fontane, L. Joly, S. Dozias, E. Robert, Plasma action on helium flow in cold atmospheric pressure plasma jet experiments, Plasma Sources Sci. Technol. 26, 105001 (2017). https://doi.org/10.1088/1361-6595/aa8877 [CrossRef] [Google Scholar]
  57. S. Nijdam, J. Teunissen, U. Ebert, The physics of streamer discharge phenomena, Plasma Sources Sci. Technol. 29, 103001 (2020). https://doi.org/10.1088/1361-6595/abaa05 [CrossRef] [Google Scholar]
  58. J. Golda, F. Kogelheide, P. Awakowicz, V.S. der Gathen, Dissipated electrical power and electron density in an RF atmospheric pressure helium plasma jet, Plasma Sources Sci. Technol. 28, 095023 (2019). https://doi.org/10.1088/1361-6595/ab393d [CrossRef] [Google Scholar]
  59. M. Qian, C. Ren, D. Wang, J. Zhang, G. Wei, Stark broadening measurement of the electron density in an atmospheric pressure argon plasma jet with double-power electrodes, J. Appl. Phys. 107, 063303 (2010). https://doi.org/10.1063/1.3330717 [CrossRef] [Google Scholar]
  60. C. Douat et al., The role of the number of filaments in the dissociation of CO 2 in dielectric barrier discharges, Plasma Sources Sci. Technol. 32, 055001 (2023). https://doi.org/10.1088/1361-6595/acceca [CrossRef] [Google Scholar]
  61. J. Dedrick et al., Self-limiting trade-off between CO yield and CO2 conversion energy efficiency in atmospheric pressure radio-frequency plasmas: picosecond laser spectroscopy, in Bulletin of the American Physical Society, 75th Annual Gaseous Electronics Conference, Oct. 04, 2022. (APS, 2022) https://meetings.aps.org/Meeting/GEC22/Session/FT2.1 [Google Scholar]
  62. M. Ramakers, I. Michielsen, R. Aerts, V. Meynen, A. Bogaerts, Effect of argon or helium on the CO2 conversion in a dielectric barrier discharge: effect of argon or helium on the CO2 conversion in a dielectric barrier discharge, Plasma Process. Polym. 12, 755 (2015). https://doi.org/10.1002/ppap.201400213 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.