Issue |
Eur. Phys. J. Appl. Phys.
Volume 88, Number 2, November 2019
|
|
---|---|---|
Article Number | 20401 | |
Number of page(s) | 13 | |
Section | Nanomaterials and Nanotechnologies | |
DOI | https://doi.org/10.1051/epjap/2019190146 | |
Published online | 05 February 2020 |
https://doi.org/10.1051/epjap/2019190146
Regular Article
Improving the efficiency of GaAs solar cells using a double semi-transparent carbon nanotubes thin layer
1
Department of Electrical Engineering, Rasht Branch, Islamic Azad University, Rasht, Iran
2
Department of Electrical Engineering, Lahijan Branch, Islamic Azad University, Lahijan, Iran
3
Department of Mechanical Engineering, Langarud Branch, Islamic Azad University, Langarud, Iran
* e-mail: ghadimi@liau.ac.ir
Received:
27
April
2019
Received in final form:
22
November
2019
Accepted:
26
November
2019
Published online: 5 February 2020
To investigate the efficiency of a single-junction solar cell that was performed using a numerical analysis method, the effect of creating several different surface-enhancer layer structures on the efficiency of the solar cell was performed. In this study, several carbon nanotube structures adapted to the solar cell structure of the gallium arsenide (GaAs) substrate were used. These elements have two important features of transparency and conductivity. Here, the effect of various parameters such as structure type, dimensions, number of layers, usable impurities and their arrangement on the solar cell efficiency was investigated. In this research, the layer added on the surface of a solar cell can be modeled on a heterogeneous carbon nanotube network. Finally, an optimized single-junction solar cell was obtained by examining the performance of the solar cell using the final carbon nanotube layers. This work resulted, the solar cell with a combination of a double-layer carbon nanotube enhancer by about 30% of efficiency, due to the ability to absorb more photons in one layer of the nanotubes, and better electrical transferability in the other layer of the nanotubes. In this solar cell, two different layers of carbon nanotube with a surface ratio of 10% and 90% of the total surface enhancer layer were used, with a cellular efficiency of about 1% improvement in performance compared with the previous one.
© EDP Sciences, 2020
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.