Issue |
Eur. Phys. J. Appl. Phys.
Volume 78, Number 3, June 2017
Materials for Energy harvesting, conversion and storage II (ICOME 2016)
|
|
---|---|---|
Article Number | 34805 | |
Number of page(s) | 9 | |
Section | Physics of Energy Transfer, Conversion and Storage | |
DOI | https://doi.org/10.1051/epjap/2017170066 | |
Published online | 12 May 2017 |
https://doi.org/10.1051/epjap/2017170066
Regular Article
A numerical study of fluid flow and heat transfer over a fin and flat tube heat exchangers with complex vortex generators*
1
Technical Sciences Department, Faculty of Technology, University of Amar Telidji-Laghouat, 03000, Algeria
2
Institute of Science and Technology, University Center of Naâma, 45000, Algeria
3
Faculty of Mechanical Engineering, USTO-MB University, Oran 31000, Algeria
a e-mail: djamel_sahel@ymail.com
Received:
19
February
2017
Revised:
7
March
2017
Accepted:
14
March
2017
Published online: 12 May 2017
A numerical work is carried out to investigate the heat transfer and fluid flow behaviors in a fin-and-flat-tube heat exchanger provided with complex vortex generators (CVGs). A new design of CVGs is proposed in the present paper, it consists of CVGs formed by two portions: a flat portion with various attack angles (β = 0°, 20°, 40° and 60°) and a curved portion with various curvature angles (α = 30°, 45° and 60°). Changes in CVGs position ratio (R*) inside the tube are also investigated and three values of R* are considered, namely: R* = 1.375, 1.750 and 2.125. Computations based on the finite volume method with the SIMPLE algorithm are conducted for the air flow. The Reynolds number is ranging from 25 to 400. The obtained results show that the vortex formed near the tubes is intensified by the flat potion of CVGs, and the curved tube guide the fluid flow towards the region behind the tubes, resulting thus in improved heat transfer rates. In a comparison with tubes without CVG, the new design suggested and especially the case with β = 60°, α = 60° and R* = 2.125 improve significantly the heat transfer (an increase by about 76%) with a moderate pressure loss penalty.
© EDP Sciences, 2017
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.