Issue |
Eur. Phys. J. Appl. Phys.
Volume 62, Number 3, June 2013
|
|
---|---|---|
Article Number | 30102 | |
Number of page(s) | 6 | |
Section | Semiconductors and Devices | |
DOI | https://doi.org/10.1051/epjap/2013130059 | |
Published online | 13 June 2013 |
https://doi.org/10.1051/epjap/2013130059
Multilayer memristive/memcapacitive devices with engineered conduction fronts
Sandia National Laboratories, P.O. Box 5800, Albuquerque, New Mexico
87185, USA
a e-mail: prmicke@sandia.gov
Received:
25
January
2013
Revised:
2
April
2013
Accepted:
19
April
2013
Published online:
13
June
2013
We present a novel multilayered architecture for memristive devices which provides an alternative to conventional conductive filament switching. In conventional resistive switching, conductive filaments form and extend stochastically under applied electrical bias, with longer filaments being subjected to magnified electric fields that amplify their growth rate, producing a spatially localized and highly non-uniform conduction front of filaments. This produces devices with large variations in resistive and capacitive properties that are difficult to tune. Here, we simulate a multilayered device structure with alternating ionic mobility that predicts the development of a quasi-uniform conduction front which amplifies memcapacitive properties of the device and reduces device-to-device variability. Furthermore, this novel structure is predicted to enable fine-tuned control of switching events, an important property for analog (multibit) memory and neuromorphic computing applications.
© EDP Sciences, 2013
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.