Issue |
Eur. Phys. J. Appl. Phys.
Volume 61, Number 2, February 2013
Topical issue: 13th International Symposium on High Pressure Low Temperature Plasma Chemistry (Hakone XIII). Edited by Nicolas Gherardi, Henryca Danuta Stryczewska and Yvan Ségui
|
|
---|---|---|
Article Number | 24309 | |
Number of page(s) | 7 | |
Section | Plasma, Discharges and Processes | |
DOI | https://doi.org/10.1051/epjap/2012120405 | |
Published online | 15 February 2013 |
https://doi.org/10.1051/epjap/2012120405
Atmospheric pressure low-power microwave microplasma source for deactivation of microorganisms *
1
Centre for Plasma and Laser Engineering, The Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Fiszera 14, 80-952 Gdańsk, Poland
2
Department of Marine Electronics, Gdynia Maritime University, Morska 81-87, 81-225 Gdynia, Poland
a e-mail: dczylkowski@imp.gda.pl
Received:
28
September
2012
Revised:
31
October
2012
Accepted:
5
December
2012
Published online:
18
February
2013
This work was aimed at experimental investigations of deactivation of different types of microorganisms by using atmospheric pressure low-temperature microwave microplasma source (MmPS). The MmPS was operated at standard microwave frequency of 2.45 GHz. Its main advantages are simple and cheap construction, portability and possibility of penetrating into small cavities. The microplasma deactivation concerned two types of bacteria (Escherichia coli, Bacillus subtilis) and one fungus (Aspergillus niger). The quality as well as quantity tests were performed. The influence of the microorganism type, oxygen concentration, absorbed microwave power, microplasma treatment time and MmPS distance from the treated sample on the microorganism deactivation efficiency was investigated. All experiments were performed for Ar microplasma and Ar/O2 microplasma with up to 3% of O2. Absorbed microwave power was up to 50 W. The Ar flow rate was up to 10 L/min. The sample treatment time was up to 10 s.
© EDP Sciences, 2013
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.