Issue |
Eur. Phys. J. Appl. Phys.
Volume 57, Number 3, March 2012
|
|
---|---|---|
Article Number | 30904 | |
Number of page(s) | 12 | |
Section | Physics of Energy Transfer, Conversion and Storage | |
DOI | https://doi.org/10.1051/epjap/2012110383 | |
Published online | 23 February 2012 |
https://doi.org/10.1051/epjap/2012110383
Effects of dispersion on electromagnetic parameters of tape-helix Blumlein pulse forming line of accelerator
College of Opto-electronic Science and Engineering, National University of Defense Technology, Changsha 410073, P.R. China
a e-mail: zyu841227@yahoo.com.cn
Received:
29
September
2011
Revised:
4
January
2012
Accepted:
6
January
2012
Published online:
23
February
2012
In this paper, the tape-helix model is firstly introduced in the field of intense electron beam accelerator to analyze the dispersion effects on the electromagnetic parameters of helical Blumlein pulse forming line (PFL). Work band and dispersion relation of the PFL are analyzed, and the normalized coefficients of spatial harmonics are calculated. Dispersion effects on the important electromagnetic parameters of PFL, such as phase velocity, slow-wave coefficient, electric length and pulse duration, are analyzed as the central topic. In the PFL, electromagnetic waves with different frequencies in the work band of PFL have almost the same phase velocity. When de-ionized water, transformer oil and air are used as the PFL filling dielectric, respectively, the pulse duration of the helical Blumlein PFL is calculated as 479.6 ns, 81.1 ns and 53.1 ns in order. Electromagnetic wave simulation and experiments are carried out to demonstrate the theoretical calculations of the electric length and pulse duration which directly describe the phase velocity and dispersion of the PFL. Simulation results prove the theoretical analysis and calculation on pulse duration. Experiment is carried out based on the tape-helix Blumlein PFL and magnetic switch system. Experimental results show that the pulse durations are tested as 460 ns, 79 ns and 49 ns in order when de-ionized water, transformer oil and air are used respectively. Experimental results basically demonstrate the theoretical calculations and the analyses of dispersion.
© EDP Sciences, 2012
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.