Issue |
Eur. Phys. J. Appl. Phys.
Volume 53, Number 3, March 2011
Focus on Telecom 2009 & JFMMA
|
|
---|---|---|
Article Number | 33606 | |
Number of page(s) | 10 | |
DOI | https://doi.org/10.1051/epjap/2010100056 | |
Published online | 22 February 2011 |
https://doi.org/10.1051/epjap/2010100056
Atomic scale study of InP etching by Cl2-Ar ICP plasma discharge
Institut des Matériaux Jean Rouxel, CNRS, Université de Nantes, IMN, Laboratoire des Plasmas et des Couches Minces, 2 rue de la Houssinière, BP 32229, 44322 Nantes Cedex 03, France
Corresponding author: Ahmed.Rhallabi@cnrs-imn.fr
Received:
5
February
2010
Revised:
15
November
2010
Accepted:
17
December
2010
Published online:
22
February
2011
A gas phase kinetic model combined to a 3D atomic etching model have been developed to study the etching process of InP under Cl2-Ar ICP plasma discharge. A gas phase global kinetic model is used to calculate the reactive particle fluxes implied in the etching mechanisms. The 3D atomic InP etching model is based on the Monte Carlo kinetic approach where the plasma surface interactions are described in the probability way. The coupling between the plasma chemistry model and the surface etching model is an interesting approach to predict the etched surface properties in terms of the etch rate, the surface roughness and surface steochiometry as a function of the operating conditions. A satisfactory agreement is obtained by comparing the experimental and the simulation results concerning the evolution of the main plasma discharge parameters such as the electron density and temperature versus the ICP source power for a surface recombination coefficient of atomic chlorine fixed at γCl = 0.04. On the other hand, simulation results show the effect of the operating conditions on the etched surface roughness and the etch rate evolutions with time in the early stage. Moreover, the simulation results show the correlation between the decrease of the ion to chlorine flux ratio and the decrease of the RRMS as a function of the pressure.
© EDP Sciences, 2011
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.