Issue |
Eur. Phys. J. Appl. Phys.
Volume 49, Number 2, February 2010
Focus on Electrical Contacts
|
|
---|---|---|
Article Number | 22901 | |
Number of page(s) | 6 | |
DOI | https://doi.org/10.1051/epjap/2009097 | |
Published online | 22 December 2009 |
https://doi.org/10.1051/epjap/2009097
Conductive polymer switching mechanism for high power current-limiting applications
Eaton Corporation, 1000 Cherrington Parkway, Moon Township, PA, 15108, USA
Corresponding author: johnjshea@eaton.com
Received:
1
December
2008
Accepted:
24
March
2009
Published online:
22
December
2009
Various thermoplastic and thermo-set based polymers, blended with acetylene carbon blacks and graphite fillers to form electrically conductive polymers, were investigated to determine the switching mechanism under high power short-circuit fault conditions. Presently, a positive temperature coefficient (PTC) effect is the accepted switching mechanism for low power overcurrent devices. However, for high power, distribution level devices, this mechanism has been assumed to be the same under high fault conditions. This work proposes another possible switching mechanism responsible for a steep change in resistance under high power faults. The proposed mechanism of resistance change comes, not from the PTC change in the material, but rather from the vaporization of the conducting polymer contact areas at the polymer/electrode interface. A comparison between low power polypropylene based devices with a positive temperature coefficient (PTC) effect (thermal expansion of the polymer bulk) and high power devices was done to support this theory. A model was developed along with numerous short-circuit tests to support this theory. Modifications with e-beam irradiation were made to alter the PTC characteristics of thermoplastics but had little effect on high fault short-circuit switching. Also, numerous short-circuit testing on thermo-set based materials without any PTC transition still switched under high fault currents. These all supported the proposed theory that switching, under high fault currents, was from vaporization of the contact areas at the polymer surface rather than thermal expansion in the bulk of the conductive polymer as previously accepted.
PACS: 52.80.Mg – Arcs; sparks; lightning; atmospheric electricity / 65.60.+a – Thermal properties of amorphous solids and glasses: heat capacity, thermal expansion, etc. / 66.70.Hk – Glasses and polymers / 72.20.Ht – High-field and nonlinear effects
© EDP Sciences, 2009
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.