Issue |
Eur. Phys. J. Appl. Phys.
Volume 38, Number 2, May 2007
|
|
---|---|---|
Page(s) | 183 - 189 | |
Section | Instrumentation and Metrology | |
DOI | https://doi.org/10.1051/epjap:2007072 | |
Published online | 30 May 2007 |
https://doi.org/10.1051/epjap:2007072
An experimental study of intermodulation effects in an atomic fountain frequency standard
METAS, Lindenweg 50, 3003 Bern-Wabern, Switzerland
Corresponding author: jocelyne.guena@obspm.fr
Received:
19
February
2007
Accepted:
27
March
2007
Published online:
30
May
2007
The short-term stability of passive atomic frequency standards, especially in pulsed operation, is often limited by local oscillator noise via intermodulation effects. We present an experimental demonstration of the intermodulation effect on the frequency stability of a continuous atomic fountain clock where, under normal operating conditions, it is usually too small to observe. To achieve this, we deliberately degrade the phase stability of the microwave field interrogating the clock transition. We measure the frequency stability of the locked, commercial-grade local oscillator, for two modulation schemes of the microwave field: square-wave phase modulation and square-wave frequency modulation. We observe a degradation of the stability whose dependence with the modulation frequency reproduces the theoretical predictions for the intermodulation effect. In particular no observable degradation occurs when this frequency equals the Ramsey linewidth. Additionally we show that, without added phase noise, the frequency instability presently equal to 2×10-13 at 1 s, is limited by atomic shot-noise and therefore could be reduced were the atomic flux increased.
PACS: 06.30.Ft – Time and frequency / 06.20.fb – Standards and calibration / 32.80.Lg – Mechanical effects of light on atoms, molecules, and ions
© EDP Sciences, 2007
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.