Eur. Phys. J. Appl. Phys.
Volume 98, 2023
Special Issue on ‘Advances in Renewable Energies, Materials and Technology’, edited by Laurene Tetard, Hamid Oughaddou, Abdelkader Kara, Yannick Dappe and Nabil Rochdi
Article Number 7
Number of page(s) 8
Section Surfaces and Interfaces
Published online 18 January 2023
  1. K.M. Kadish, K.M. Smith, R. Guilard, The Porphyrin Handbook: Phthalocyanines: Properties and Materials (2012) [Google Scholar]
  2. A.B. Sorokin, Phthalocyanine metal complexes in catalysis, Chem. Rev. 113, 8152 (2013) [Google Scholar]
  3. G.D. Sharma, R. Kumar, M.S. Roy, Investigation of charge transport, photo generated electron transfer and photovoltaic response of iron phthalocyanine (FePc):TiO2 thin films, Sol. Energy Mater. Sol. Cells 90, 32 (2006) [Google Scholar]
  4. P. Palmgren, K. Nilson, S. Yu, F. Hennies, T. Angot, C.I. Nlebedim, J.M. Layet, G. Le Lay, M. Göthelid, Strong interactions in dye-sensitized interfaces, J. Phys. Chem. C 112, 5972 (2008) [Google Scholar]
  5. R. Karstens, M. Glaser, A. Belser, D. Balle, M. Polek, R. Ovsyannikov, E. Giangrisostomi, T. Chassé, H. Peisert, FePc and FePcF16 on Rutile TiO2(110) and (100): influence of the substrate preparation on the interaction strength, Molecules 24, 4579 (2019) [Google Scholar]
  6. R.G.A. Veiga, R.H. Miwa, A.B. McLean, Adsorption of metal-phthalocyanine molecules onto the Si(111) surface passivated by δ doping: Ab initio calculations, Phys. Rev. B. 93, 1 (2016) [Google Scholar]
  7. D. Jin, H.Q. Qian, L.Z. Jiang, H.J. Zhang, H.Y. Li, P.M. He, S.N. Bao, A. Ur Rehman, Geometric and electronic structures at the interface between iron phthalocyanine and Si (110), Chin. Phys. Lett. 28, 116804 (2011) [Google Scholar]
  8. L. Grzadziel, M. Krzywiecki, H. Peisert, T. Chassé, J. Szuber, Photoemission study of the Si(1 1 1)-native SiO2/copper phthalocyanine (CuPc) ultra-thin film interface, Org. Electron 13, 1873 (2012) [Google Scholar]
  9. M. Krzywiecki, L. Grza̧dziel, Energy level alignment at the Si(111)/RCA-SiO2/copper(II) phthalocyanine ultra-thin film interface, Appl. Surf. Sci. 311, 740 (2014) [Google Scholar]
  10. A.S. Komolov, P.J. Møller, Interface formation between thin Cu-phthalocyanine films and crystalline and oxidized silicon surfaces, Synth. Met. 128, 205 (2002) [Google Scholar]
  11. J. Weissenrieder, S. Kaya, J.-L. Lu, H.-J. Gao, S. Shaikhutdinov, H.-J. Freund, M. Sierka, T.K. Todorova, J. Sauer, Atomic structure of a thin silica film on a Mo(112) substrate: a two-dimensional network of SiO4 tetrahedra, Phys. Rev. Lett. 95, 076103 (2005) [Google Scholar]
  12. R. Włodarczyk, M. Sierka, J. Sauer, D. Löffler, J.J. Uhlrich, X. Yu, B. Yang, I.M.N. Groot, S. Shaikhutdinov, H.-J. Freund, Tuning the electronic structure of ultrathin crystalline silica films on Ru(0001), Phys. Rev. B 85, 085403 (2012) [Google Scholar]
  13. X. Yu, B. Yang, J. Anibal Boscoboinik, S. Shaikhutdinov, H.J. Freund, Support effects on the atomic structure of ultrathin silica films on metals, Appl. Phys. Lett. 100, 151608 (2012) [Google Scholar]
  14. H. Fukuda, M. Yasuda, T. Iwabuchi, Characterization of SiO2/Si(100) interface structure of ultrathin SiO2 films using spatially resolved electron energy loss spectroscopy, Appl. Phys. Lett. 61, 693 (1998) [Google Scholar]
  15. H. Tissot, X. Weng, P. Schlexer, G. Pacchioni, S. Shaikhutdinov, H.J. Freund, Ultrathin silica films on Pd(111): structure and adsorption properties, Surf. Sci. 678, 118 (2018) [Google Scholar]
  16. T. Das, S. Tosoni, G. Pacchioni, Role of support in tuning the properties of single atom catalysts: Cu, Ag, Au, Ni, Pd, and Pt adsorption on SiO2/Ru, SiO2/Pt, and SiO2/Si ultrathin films, J. Chem. Phys. 154, 48104 (2021) [Google Scholar]
  17. J.F. Jerratsch, N. Nilius, D. Topwal, U. Martinez, L. Giordano, G. Pacchioni, H.J. Freund, Stabilizing monomeric iron species in a porous silica/Mo(112) film, ACS Nano. 4, 863 (2010) [Google Scholar]
  18. B. Yang, W.E. Kaden, X. Yu, J.A. Boscoboinik, Y. Martynova, L. Lichtenstein, M. Heyde, M. Sterrer, R. Włodarczyk, M. Sierka, J. Sauer, S. Shaikhutdinov, H.J. Freund, Thin silica films on Ru(0001): monolayer, bilayer and three-dimensional networks of [SiO4] tetrahedra, Phys. Chem. Chem. Phys. 14, 11344 (2012) [Google Scholar]
  19. G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54, 11169 (1996) [Google Scholar]
  20. G. Kresse, Ab initio molecular dynamics for liquid metals, J. Non. Cryst- Solids 192–193, 222 (1995) [Google Scholar]
  21. G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci. 6, 15 (1996) [Google Scholar]
  22. W. Malone, A. Kara, A coverage dependent study of the adsorption of pyridine on the (111) coinage metal surfaces, Surf. Sci. 693, 121525 (2020) [Google Scholar]
  23. W. Malone, A. Kara, Chemisorption characteristics of pyridine on Rh, Pd, Pt and Ni (1 1 1), Electr. Struct. 2, 015001 (2020) [Google Scholar]
  24. M. Jabrane, M. El Hafidi, M.Y. El Hafidi, A. Kara, Fe-Phthalocyanine on Cu (111) and Ag (111): a DFT+ vdWs investigation. Surf. Sci. 716, 121961 (2022) [Google Scholar]
  25. K. Müller, N. Schmidt, S. Link, R. Riedel, J. Bock, W. Malone, K. Lasri, A. Kara, U. Starke, M. Kivala, M. Stöhr, Triphenylene‐derived electron acceptors and donors on Ag (111): formation of intermolecular charge‐transfer complexes with common unoccupied molecular states, Small 33, 1901741 (2019) [Google Scholar]
  26. J. Klime, D.R. Bowler, A. Michaelides, Van der Waals density functionals applied to solids, Phys. Rev. B 83, 1 (2011) [Google Scholar]
  27. G. Baffou, A.J. Mayne, G. Comtet, G. Dujardin, P. Sonnet, L. Stauffer, Anchoring phthalocyanine molecules on the 6H-SiC (0001) 3×3 surface, Appl. Phys. Lett. 91, 2005 (2007) [Google Scholar]
  28. M. Yu, D.R. Trinkle, Accurate and efficient algorithm for Bader charge integration, J. Chem. Phys. 134, 1 (2011) [Google Scholar]
  29. S. Menzli, B. Ben Hamada, I. Arbi, A. Souissi, A. Laribi, A. Akremi, C. Chefi, Adsorption study of copper phthalocyanine on Si(111)(√ × √)R30°Ag surface, Appl. Surf. Sci. 369, 43 (2016) [Google Scholar]
  30. E. Bartolomé, J. Bartolomé, F. Sedona, J. Lobo-Checa, D. Forrer, J. Herrero-Albillos, M. Piantek, J. Herrero-Martín, D. Betto, E. Velez-Fort, L.M. García, M. Panighel, A. Mugarza, M. Sambi, F. Bartolomé, Enhanced magnetism through oxygenation of FePc/Ag(110) monolayer phases, J. Phys. Chem. C. 124, 13993 (2020) [Google Scholar]
  31. D. Klar, B. Brena, H.C. Herper, S. Bhandary, C. Weis, B. Krumme, C. Schmitz-Antoniak, B. Sanyal, O. Eriksson, H. Wende, Oxygen-tuned magnetic coupling of Fe-phthalocyanine molecules to ferromagnetic Co films, Phys. Rev. B 88, 1 (2013) [Google Scholar]
  32. N. Tsukahara, K.I. Noto, M. Ohara, S. Shiraki, N. Takagi, Y. Takata, J. Miyawaki, M. Taguchi, A. Chainani, S. Shin, M. Kawai, Adsorption-induced switching of magnetic anisotropy in a single iron(II) phthalocyanine molecule on an oxidized Cu(110) surface, Phys. Rev. Lett. 102, 1 (2009) [Google Scholar]
  33. J.F. Kirner, W. Dow, W.R. Scheidt, Molecular stereochemistry of two intermediate-spin complexes. Iron(II) phthalocyanine and manganese(II) phthalocyanine, Inorg. Chem. 15, 1685 (1976) [Google Scholar]
  34. G. Henkelman, H. Jónsson, Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points, J. Chem. Phys. 113, 9978 (2000) [Google Scholar]
  35. G. Henkelman, B.P. Uberuaga, H. Jónsson, A climbing image nudged elastic band method for finding saddle points and minimum energy paths, J. Chem. Phys. 113, 9901 (2000) [NASA ADS] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.