Eur. Phys. J. Appl. Phys.
Volume 74, Number 3, June 2016
Article Number 30102
Number of page(s) 10
Section Semiconductors and Devices
Published online 03 June 2016
  1. J.-S. Lee, C.-C. Chuang, C.-C. Shen, Applications of short-range wireless technologies to industrial automation: a ZigBee approach, in Proc. of 5th Advanced International Conference on Telecommunications, 2009 (AICT’09), Venice, Italy, 2009, pp. 15–20 [CrossRef] [Google Scholar]
  2. L. Yang, M.M. Tentzeris, Design and characterization of novel paper-based inkjet-printed RFID and microwave structures for telecommunication and sensing applications, in Proc. of IEEE MTT-S International Microwave Symposium (IMS’07), Honolulu, HI, 2007, pp. 1633–1636 [CrossRef] [Google Scholar]
  3. G. Monti, L. Corchia, L. Tarricone, Fabrication techniques for wearable antennas, in Proc. of European Radar Conference (EuRAD) 2013, Nuremberg, Germany, 2013, pp. 435–438 [Google Scholar]
  4. Z. Konstas, A. Rida, R. Vyas, K. Katsibas, N. Uzunoglu, M.M. Tentzeris, A novel “Green” inkjet-printed Z-shaped monopole antenna for RFID applications, in Proc. of IEEE 3rd European Conference on Antennas and Propagation (EuCAP’09), Berlin, Germany, 2009, pp. 2340–2343 [Google Scholar]
  5. Y. Main, Q. Chen, L.-R. Zheng, H. Tenhunen, Progress Electromagn. Res. 130, 1 (2012) [CrossRef] [Google Scholar]
  6. L. Yang, L. Martin, D. Staiculescu, C.P. Wong, M.M. Tentzeris, Design and development of compact conformal RFID antennas utilizing novel flexible magnetic composite materials for wearable RF and biomedical applications, in Proc. of Antennas and Propagation Society International Symposium 2008, San Diego, CA, 2008, pp. 1–4 [Google Scholar]
  7. D.O. Kim, C.Y. Kim, D.G. Yang, Int. J. Antennas Propag. 2012, 1 (2012) [CrossRef] [Google Scholar]
  8. H.R. Raad, A.I. Abbosh, H.M. Al-Rizzo, D.G. Rucker, IEEE Trans. Antennas Propag. 61, 524 (2013) [CrossRef] [Google Scholar]
  9. COLAE (Commercializing Organic and Large Area Electronics),, accessed 2014 [Google Scholar]
  10. A.C. Durgun, M.S. Reese, C.A. Balanis, C.R. Birtcher, D.R. Allee, S. Venugopal, IEEE Trans. Antennas Propag. 59, 4425 (2011) [CrossRef] [Google Scholar]
  11. H.-Y. Chien, C.-Y.-D. Sim, C.-H. Lee, Compact size dual-band antenna printed on flexible substrate for WLAN operation, in Proc. of Int. Symp. on Antennas and Propagation (ISAP), 2012, Nagoya, Japan, 2012, pp. 1047–1050 [Google Scholar]
  12. D.L. Paul, L. Zhang, L. Zheng, Flexible dual-band LCP antenna for RFID applications, in Proc. of URSI International Symposium on Electromagnetic Theory (EMTS) 2013, Hiroshima, Japan, 2013, pp. 973–976 [Google Scholar]
  13. H.R. Khaleel, H.M. Al-Rizzo, A.I. Abbosh, in Advancement in Microstrip Antennas With Recent Applications, edited by A. Kishk (Intech, Vienna, Austria, 2013), Chap. 5, pp. 363–383 [Google Scholar]
  14. E.F. Knott, J.F. Shaeffer, M.T. Tuley, Radar Cross Section, 2nd edn. (SciTech Publishing, Inc, Raleigh, NC, 2004) [Google Scholar]
  15. A.J. Fenn, D.H. Temme, W.P. Delaney, W.E. Courtney, Lincoln Lab. 12, 321 (2000) [Google Scholar]
  16. A.A. Eldek, A.Z. Elsherbeni, C.E. Smith, Microw. Opt. Technol. Lett. 46, 36 (2005) [CrossRef] [Google Scholar]
  17. J.R. James, P.S. Hall, C. Wood, Microstrip Antenna Theory and Design (Peter Peregrinus, Ltd, New York, USA, 1981), pp. 103–109 [Google Scholar]
  18. A.K. Verma, Nasimuddin, J. Microw. Optoelectron. Electromagn. Appl. 2, 30 (2002) [Google Scholar]
  19. G. Kumar, K.P. Ray, Broadband Microstrip Antennas (Artech House, Boston, London, 2002) [Google Scholar]
  20. K. Goswami, A. Dubey, G.C. Tripathi, B. Singh, GJRE 11, 22 (2011) [Google Scholar]
  21. B.-K. Ang, B.-K. Chung, Progress Electromagn. Res. 75, 397 (2007) [CrossRef] [Google Scholar]
  22. V.G. Kasabegoudar, K.J. Vinoy, Progress Electromagn. Res. 90, 353 (2009) [CrossRef] [Google Scholar]
  23. J.R. Ojha, M. Peters, Microwave and Millimeter Wave Technologies: Modern UWB Antennas and Equipment (Intech, Rijeka, Croatia, 2010), pp. 50–62 [Google Scholar]
  24. A. Danideh, R. Sadeghi-Fakhr, H.R. Hassani, Progress Electromagn. Res. Lett. 4, 81 (2008) [CrossRef] [Google Scholar]
  25. A.A. Lotfi-Neyestanak, Progress Electromagn. Res. 86, 155 (2008) [CrossRef] [Google Scholar]
  26. R. Zaker, Ch. Ghobadi, J. Nourinia, Progress Electromagn. Res. 77, 137 (2007) [CrossRef] [Google Scholar]
  27. Polyimides, UBE America Inc,, accessed 2015 [Google Scholar]
  28. B. Ravelo, Int. J. Electronics 99, 597 (2012) [CrossRef] [Google Scholar]
  29. D.A. Frickey, IEEE Trans. Microwave Theor. Tech. 42, 205 (1994) [CrossRef] [Google Scholar]
  30. E. Hammerstad, O. Jensen, Accurate models for microstrip computer aided design, in IEEE MTT-S Int. Microwave Symposium Digest, Washington, DC, 1980, pp. 407–409 [Google Scholar]
  31., accessed 2014 [Google Scholar]
  32. Skyworks®, SKY13355-374LF: 0.1-6.0 GHz DPDT Switch, Datasheet, 2011, pp. 1–9 [Google Scholar]
  33. High Frequency Structural Simulator (HFSS®),, accessed 2015 [Google Scholar]
  34. Advanced Design System (ADS®),, accessed 2015 [Google Scholar]
  35. T. Inui, H. Koga, M. Nogi, N. Komoda, K. Suganuma, Adv. Mater. 27, 1112 (2014) [CrossRef] [PubMed] [Google Scholar]
  36. S. Kimura, K. Fujiwara, H. Shimasaki, Frequency shift of a cavity-backed slot antenna bent along a spherical surface, in Proc. 2015 IEEE 4th Asia-Pacific Conference on Antennas and Propagation (APCAP), 2015, Kuta, 2015, pp. 123–125 [CrossRef] [Google Scholar]
  37. X. Zhang, C.J. Chung, S. Wang, H. Subbaraman, Z. Pan, Q. Zhan, R. Chen, IEEE Antennas Wirel. Propag. Lett. 15, 1377 (2015) [CrossRef] [Google Scholar]
  38. R. Di Pietro, L.V. Mancini, Commun. Acm 46, 75 (2003) [CrossRef] [Google Scholar]
  39. Information Week, 10 wearable devices to keep patients healthy, [Google Scholar]
  40. Wearable & IoT solutions, [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.