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Abstract. We give an analytical demonstration of the possibility to realize a simple phononic demultiplexer
based on Fano and acoustic induced transparency resonances. The demultiplexer consists of a Y-shaped
waveguide with an input line and two output lines. Each output line contains two stubs grafted either at
a given position or at two positions far from the input line. We derive in closed form the expressions for a
selective transfer of a single propagating mode through one line keeping the other line unaffected.

1 Introduction

Fano and EIT (Electromagnetically Induced Trans-
parency) resonances [1–3] have an atomic origin, but they
have been the subject of several studies in classical sys-
tems such as coupled micro-resonators [4–6], photonic
waveguides [7–11], acoustic slender tube waveguides and
solid-liquid multilayers [12–21] as well as plasmonic nonos-
tructures [22–26]. Fano resonance can be explained as
the product of two processes of constructive and destruc-
tive wave interferences. This phenomenon gives rise to a
resonance followed by an antiresonance over a narrow fre-
quency range and can be manifested by an asymmetrical
profile shape. In the transmission spectra, the Fano pro-
file appears as a maximum near to a transmission zero
[27,28]. When the Fano resonance falls between two anti-
resonances (two transmission zeros) it becomes an EIT
resonance. In optics this phenomenon has shown poten-
tial applications to realize slow light and data storage of
optical information [29–32]. Fano and EIT resonances are
originally the product of a coupling between one or more
discrete states and a continuum [3].

In general, to create this type of resonances in classical
systems, one directly or indirectly connects two or more
resonators with a waveguide. Among the simple structures
giving a clear theoretical and experimental demonstration
of such resonances, one can cite a guide connected with
two lateral resonators at the same position (called a cross
structure) or at two different positions (called U-shaped
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structure). In acoustics the U-shaped structure was first
studied by El Boudouti et al. [12] to show Fano and AIT
(the acoustic analogue of EIT) resonances. A few years
later, the same structure was studied by Santillan et al.
[13] to demonstrate AIT resonances and delayed sound.
More recently, cross and U-shaped structures have been
the subject of interest by Merkel et al. [14] to experi-
mentally show AIT and Fano resonances as well as the
possibility to realize perfect absorption with such struc-
tures. Similar structures but with multiple stubs have
been proposed by Long et al. [33] to realize multiband
and broadband absorbers for low-frequency sound. One
can also cite the earlier work of Robertson et al. [34]
where the effect of a defect in slowing down the group
velocity in a one dimensional acoustic band gap array was
studied. It is worth mentioning that cross and U-shaped
photonic structures based on coaxial cables have been
studied both theoretically and experimentally [10,11] in
the radio-frequency domain. In addition, the cross struc-
ture has been proposed to study a Y-shaped demultiplexer
based on EIT resonances [35]. This demultiplexer consists
on one input line and two output lines, each one containing
a cross-shaped resonator.

Acoustic demultiplexers based on phononic crystals
with different defects has been realized either through
what is called add-drop filters [36,37] or multi-port chan-
nels [38,39]. Recently, three-port acoustic network has
been used to study subwavelength control of absorption
[40] using resonators on each channel. Also, it has been
shown in multi-channel systems, the possibility to gener-
ate outgoing waves only in certain channels by controlling
the incoming waves. Such systems, called coherent per-
fect channeling, have been demonstrated in three- and
four-port configurations in presence of a resonator at the
common junction. The incoming waves are first coherent
perfectly channeled to other channels, in which they
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Fig. 1. Schematic representation of a Y-shaped demultiplexer
with one input line and two output lines. Two stubs are grafted
at the same position along each output line. The geometrical
parameters are defined in the text.

could then be manipulated. If the manipulation is absorp-
tion, then the process will give rise to coherent perfect
absorption [41]. In this paper we propose two Y-shaped
acoustic demultiplexers with two different configurations:
the first structure is based on the cross-shape structure
(Fig. 1) and the second one is based on the U-shape struc-
ture (Fig. 7). The demultiplexers in these two devices are
based on AIT and Fano resonances. Our objective consists
of demonstrating the possibility of finding analytically
the appropriate lengths of the different waveguide res-
onators in order to reach total transmission in one output
line keeping the other lines unaffected. The demultiplex-
ers proposed in this study have several advantages over
those based on phononic crystals [38,39], such as: i) the
simplicity of the device manufacturing where only two
resonators are needed on each output line instead of a
periodic structure with a given defect, ii) the simplicity
of the structure enables a full analytical calculation which
allows to deduce the exact expressions of the different
lengths of the waveguides to achieve a perfect demultiplex-
ing. iii) The possibility of increasing the quality factor of
the filtered resonances to infinite values by detuning the
lengths of the two stubs. This property is a feature of
Fano and induced transparency resonances that does not
exist in standard phononic crystals with defects in which
filtering is performed using finite width Breit-Wigner res-
onances [34,38,39,42]. It should be pointed out that the
validity of our results is subject to the requirement that
the cross section of the slender tubes being negligible
compared to their length and to the propagation wave-
length. The assumption of monomode propagation is then
satisfied.

The rest of the paper is organized as follows: in Section 2
we shall give the analytical expressions of the lengths
of the tubes that enables to realize a perfect demulti-
plexing for the cross structure. These analytical results
are obtained from an analysis of the transmission and
reflection coefficients and will be illustrated by numeri-
cal applications in standard acoustic slender tubes [13].
Section 3 gives the same results as in Section 2 but
for U-structure. The last section contains the concluding
remarks.

2 Demultiplexer based on cross structure

2.1 Transmission and reflection coefficients

Consider the structure shown in Figure 1, this structure
is composed of an input line and two output lines, all
fixed at point 1. The first output line contains two stubs
of lengths d1 and d2 inserted on the same site 2 at a
distance d5 from the input 1. Likewise, the second output
line contains two stubs of lengths d3 and d4 inserted on
the same site 3 at the distance d6 from the input 1. The
possibility of realizing an AIT type resonance in a simple
cross structure composed of two resonators of lengths d1
and d2 connected at one point along an infinite waveguide,
has been the subject of several previous works [12–14].
In a cross structure, the AIT resonance is obtained by
the entire stub of lengths d0 = d1 + d2. This resonance is
trapped between two transmission zeros induced by the
two elementary stubs of length d1 and d2.

The calculation of the transmission and reflection coef-
ficients is carried out using the Green’s function method
[43]. For simplicity, all waveguides are assumed being char-
acterized by the same characteristic impedance Z = ρv

S

where ρ = 1.2Kg/m
3 and v = 342m/s are respectively

the density and velocity of the fluid inside the slender
tubes (namely, air) and S = 3.14 cm2 is the section of the
guide. We have chosen the same parameters as those used
in the experimental work by Santillan and Bozhevolnyi
[13]. However, the resonators are supposed to be sim-
ple stubs instead of Helmholtz resonators with narrow
neck in order to get analytical expressions for a per-
fect demultiplexing (see below), otherwise the calculation
becomes cumbersome and only numerical simulation can
be performed.

The analytical expressions of the transmission coeffi-
cients t1 and t2 along first and second output lines and
the reflection coefficient r in the input line are obtained
using the same procedure of calculation as for photonic
waveguides [35]. We shall avoid the details of these calcu-
lations (see the supplementary material1) and give below
the expressions of t1, t2 and r in closed form, namely

t1 =
2C1C2(−C6C3C4 + S

′
S6 + jC3C4S6)

χ1 + jχ2
, (1)

t2 =
2C3C4(−C5C1C2 + SS5 + jC1C2S5)

χ1 + jχ2
, (2)

and

r = − ξ1 + jξ2
χ1 + jχ2

(3)

where

ξ1 = C1C2C3C4(S5S6 − C5C6) + C1C2S
′
C6S5

+C3C4SC5S6 + SS′S5S6 (4)

1 The supplementary material gives the details of the Green’s function
calculations to derive all the transmission and reflection coefficients.
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ξ2 = C1C2C3C4S0 + C1C2S
′
C5C6

+C3C4SC5C6 − S0SS
′

(5)

χ1 = 3C1C2C3C4(S5S6 − C5C6) + C1C2S
′(S0 + C5S6)

+C3C4S(S0 + C6S5)− SS′S5S6 (6)

χ2 = C1C2C3C4(3C6S5 + 3C5S6) + (C5C6 − 2S5S6)

(C1C2S
′ + C3C4S)− S0SS

′
(7)

and Ci = cos(kdi), Si = sin(kdi) (i = 1-6), S = sin(k(d1+

d2)), S
′
= sin(k(d3 + d4)), S0 = sin(k(d5 + d6)). k = ω/v

is the wave-vector of the sound wave in the slender tubes
and ω is the angular frequency.

In the absence of loss, the transmission coefficients in
the two output lines are given respectively by T1 = |t1|2
and T2 = |t2|2 while the expression of the reflection R
in the input line is given by R = |r|2. The transmission
and reflection coefficients satisfy the energy conservation:
T1 + T2 +R = 1.

2.2 Numerical results and discussions

Now, we are able to choose the precise parameters of
the system to obtain a complete transmission in the two
output lines with neighboring frequencies. Indeed, from
equations (1), (2) and (3), one can show easily that in
order to realize |T1| = 1, T2 = 0 and R = 0, one should
have C3C4 = 0 (i.e., C3 = 0 or C4 = 0), S = 0 and
C6 = 0. Similarly, in order to realize |T2| = 1, T1 = 0 and
R = 0, one should have C1C2 = 0 (i.e., C1 = 0 or C2 = 0),
S′ = 0 and C5 = 0. Now, in order to realize both T1 = 1
and T2 = 1 at two different and neighboring frequencies,
we can show after some algebraic calculations that the
six lengths d1, d2, d3, d4, d5 and d6, should satisfy the
following conditions:

d1 =
d0
2
− δ

2
(8)

d2 = d5 =
d0
2

+
δ

2
(9)

d3 = d6 =
d0
2

(10)

d4 =
d0
2

+ δ, (11)

where we have introduced a detuning parameter δ = d2 −
d1 6= 0 between the two stubs along the output 1 (Fig. 1).
This is a necessary and sufficient condition to realize an
AIT resonance along the output 1. In addition, along this
study we shall fix the length of the two stubs (i.e., d0 =
d2 + d1) which fixes the position of the AIT resonance
along the output 1.

In order to illustrate the results above, we present in
Figure 2 the variation of the transmission coefficients T1
and T2 and the reflection coefficient R as a function of
the frequency f for different values of δ = d2 − d1 around
δ = 0 and for d0 = 8.57 cm. The choice of the length of
d0 = d1 + d2 enables to fix the frequency of the first AIT

Fig. 2. Variation of the transmission along the output 1 (con-
tinuous curve), the output 2 (discontinuous curve) and the
reflection in the input (dotted curve) of the demultiplexer as
a function of frequency f for different values of δ = d2 − d1 and
for d0 = d1 + d2 = 8.57cm.

resonance induced by the two stubs along the first output
at ωd0/v = π (i.e., around f0 = 2000Hz as in reference
[13]). Similarly, the length of the two stubs along the
second line d′0 = d3 + d4 is chosen such that the second
resonance induced by the later stubs falls at the vicin-
ity of the one induced by the former stubs. In particular,
we have chosen the same parameter δ representing the
detuning between the AIT resonances and at the same
time the separation between the transmission zeros of each
AIT resonance (i.e., d′0 − d0 = d2 − d1 = d4 − d3 = δ).
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Fig. 3. Variation of the frequency of the two AIT resonances
along the two output guides as a function of δ.

Figure 2 clearly shows that when the transmission along
the first output (continuous curve) reaches unity (T1 = 1),
the transmission along the second output T2 (discontin-
uous curve) and the reflection R (dotted curve) vanish
(i.e., T2 = R = 0). Similarly, when the transmission along
the second output line (discontinuous curve) reaches unity
(T2 = 1), the transmission along the first output line T1
(continuous curve) and the reflection R (dotted curve)
vanish (i.e., T1 = R = 0). As mentioned above, the AIT
resonance in the first output falls at the same frequency
f0 ' 2000Hz for all δ values, its width decreases when
δ decreases and disappears for δ = 0 (Fig. 2). In addi-
tion, the shape and width of the AIT resonance changes
slightly when δ becomes negative (i.e., for a permutation
of both stubs 1 and 2). The position and width of the reso-
nance along the second line strongly depend on δ. Indeed,
since the first resonance AIT has two transmission zeros
around f0 = 2000Hz, the position of the second AIT reso-
nance falls above f0 = 2000Hz for δ < 0 (Figs. 2a and 2b),
crosses the first resonance at δ = 0 and reappears below
f0 = 2000Hz for δ > 0 (Figs. 2c and 2d). This is illus-
trated in Figure 3 where we have given the variation of
the frequencies f1 and f2 of both resonances for differ-
ent values of δ. It can be noted that the frequency f1 of
the resonance along the first line remains constant at f0
regardless the value of δ, whereas the frequency f2 of the
second resonance falls above f0 for δ negative (δ < 0) then
it reappears below f0 when δ becomes positive (δ > 0).
The crossing between the two resonances takes place for
δ = 0.

Figure 4 gives the quality factor Q of the two resonances
as a function of δ. We remark that the quality factor is
almost the same for both resonances; it decreases very
rapidly as a function of δ and tends to infinity when δ
tends to zero. This kind of resonance (with infinite life-
time) is called bound in continuum state [44], it represents
a stationary mode in the cross stubs and do not interact
with the incident waves in the main waveguides.

In the previous results we have neglected the effect of
loss on the AIT resonances. In Figure 5 we have given the
same transmission spectra as in Figure 2b but in presence
of damping. We have considered the same damping due
to viscosity and thermal conduction in the resonators as
in the experimental work by Santillan and Bozhevolnyi
[13]. One can see that the transmission does not reach

Fig. 4. Variation of the quality factors Q1 and Q2 of the AIT
resonances as a function of δ.

Fig. 5. Same as in Figure 2b but in presence of loss in the
slender tubes.

unity because of the attenuation of sound in the guides,
the energy transmitted remains less than 80% in both
branches. Also, the effect of absorption on the ampli-
tude of the AIT resonances becomes very important for
resonances with narrow width.

In order to analyze the spatial localization of the dif-
ferent modes that can be filtered or stopped by the
demultiplexer, we have calculated the displacement field
along the two output lines of the system [43]. Figure 6
gives the square modulus of the displacement field |U |2
for the resonance f1 = 2000Hz with δ = −1.85 cm, i.e.,
d1 = 5.21 cm, d2 = d5 = 3.36 cm, d3 = d6 = 4.285 cm,
d4 = 2.435 cm (Fig. 2a). This mode corresponds to a fil-
tered mode (full curve) in one line and a stopped mode
(dashed curve) in the other line (Fig. 2a). Figure 6 shows
that the mode f1 = 2000Hz is transferred along the out-
put 1 (Fig. 6a), whereas it is stopped along the output 2
(Fig. 6b). The transfer of this mode along the output 1
is due to the excitation of both stubs of lengths d1 and
d2 along this line as it illustrated in Figure 6c, whereas
its stopping along the second line is due to the excita-
tion of the stationary mode of only the stub of length
d4 = 2.435 cm as shown in Figure 6d. Similar results are
obtained for the resonance mode f2 = 2544Hz, but this
time the transfer occurs along the second line through the
excitation of its double stubs of lengths d3 and d4, whereas
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Fig. 6. Square modulus of the displacement field |U |2 (in arbi-
trary units) versus the space position along the output 1 (a) and
the output 2 (b) for f1 = 2000Hz. (c) and (d) show the behavior
of |U |2 along the vertical stubs in each line. 1, 2 and 3 indicate
the entrance and the exit along each line (Fig. 1)

the wave is stopped along the first line as a consequence
of the excitation of the mode of one of its stubs of length
d2 = 3.36 cm. These results clearly show how the lengths
of the finite guides constituting the demultiplexer should
be chosen appropriately in order to transfer a wave in one
line keeping the other line unaffected.

3 Demultiplexer based on U-structure

As mentioned above, the U-shaped resonator along a
waveguide was the subject of several studies in acoustics
by different authors [12,14]. In particular, it was shown
that such structures can present two types of resonances:
AIT-type resonances when the two resonators have differ-
ent lengths and Fano resonances when the two resonators
have the same lengths. In this section we consider the U-
shaped demultiplexer composed of an input line and two
output lines, all connected at the same point 1 (Fig. 7).
On the first output line we connect two lateral stubs of
lengths d1 and d2 separated by a distance d0. The stub of
length d1 is inserted in the site 2 at a distance d5 from
the input 1 and the stub of length d2 is inserted in the
site 3 at a distance d5 + d0 from input 1. Similarly, the
second output line contains two lateral stubs of lengths d3
and d4 separated by a distance d′0. The stub of length d3
is inserted in the site 4 at the distance d6 from the input
1 and the stub of length d4 is inserted in the site 5 at a
distance d6 + d′0 from the input 1 (Fig. 7).

The calculation of the transmission and reflection coef-
ficients for the demultiplexer based on U-shaped structure
can be performed in the same way as in Section 2 using
the Green’s function method [43] (see the supplementary
material1). However, the corresponding expressions are
more cumbersome; therefore, we shall give only the con-
ditions that should be satisfied by all the guides in order
to realize perfect demultiplexing. Also, we shall distin-
guish two different cases depending on whether the stubs
along each output line are slightly different which gives

Fig. 7. Schematic representation of a Y-shaped demultiplexer
with one input line and two output lines. Two stubs are grafted
at two different positions along each output line. The geometrical
parameters are defined in the text.

rise to AIT resonances or identical which gives rise to
Fano resonances.

3.1 Demultiplexer based on AIT resonances

As already demonstrated in previous works [12,14], in
order to get AIT resonance with such structures, we
should take the lengths of the two stubs along one guide
slightly different (i.e., δ = d2− d1 6= 0). In addition, along
this study we will fix the total length of the two stubs
along the first output line such that d0 = d2 + d1 which
fixes the position of the AIT resonance along this line.
Now, in order to achieve total transmission for two neigh-
boring frequencies along the two output lines, the lengths
of the different guides should be taken as follows:

d1 =
d0
2

+
δ

2
, (12)

d2 = d5 =
d0
2
− δ

2
, (13)

d3 = d6 =
d0
2
, (14)

d4 =
d0
2
− δ, (15)

d′0 = d3 + d4 = d0 − δ. (16)

Figure 8 presents the variation of the transmission coef-
ficients T1 and T2 and the reflection coefficient R as
a function of the frequency f for different values of δ
around δ = 0. We can see clearly that for each δ, when the
transmission along the first output line (continuous curve)
reaches unity (T1 = 1), the transmission along the second
output line T2 (discontinuous curve) and the reflection R
(dotted curve) cancel out each other (i.e., T2 = R = 0).
Similarly, when the transmission along the second line
(discontinuous curve) reaches unity (T2 = 1), the trans-
mission along the first line T1 (continuous curve) and the
reflection R (dashed curve) vanish (i.e., T1 = R = 0). As
mentioned above, the AIT resonance in the first output

10902-p5



6 A. Mouadili et al.: Eur. Phys. J. Appl. Phys. 90, 10902 (2020)

Fig. 8. Variation of the transmission along the output 1 (con-
tinuous curve), the output 2 (discontinuous curve) and the
reflection in the input (dotted curve) of the demultiplexer as
a function of the frequency f for different values of δ and for
d0 = d1 + d2 = 8.57 cm.

line falls at the same frequency for all δ values, its width
decreases as δ decreases and disappears for δ = 0 (Fig. 8),
giving rise to bound in continuum states [44]. In addition,
the shape and width of the AIT resonance change slightly
when δ becomes negative (i.e., for a permutation of both
stubs 1 and 2). The position and width of the resonance
along the second line strongly depend on δ.

Indeed, as the first AIT resonance has two transmis-
sion zeros around f0 = 2000 Hz, the position of the
second AIT resonance falls above f0 = 2000 Hz for δ < 0,
cross the first resonance at δ = 0 and reappears below

f0 = 2000 Hz for δ > 0. This behavior is similar to the
one obtained in Figure 3 for the cross-structure where the
crossing between the two resonances takes place for δ = 0.
Also, the variation of the quality factor Q of the two AIT
resonances in the two outputs lines as a function of δ,
follows the same behavior as in Figure 4. In particular, Q
increases rapidly when the absolute value of δ decreases
and tends towards infinity when δ tends to zero.

3.2 Demultiplexer based on Fano resonances

As mentioned in reference [12], in order to achieve a
Fano resonance, one should take both stubs with identi-
cal lengths, but slightly different from d0

2 (i.e., d1 = d2 6=
d0/2) along the first output line. Similarly, we should take
d3 = d4 6= d′0/2 along the second output line. The explicit
expressions of the eight different lengths d1, d2, d3, d4,
d5, d6, d0 and d′0 should satisfy the following equations in
order to obtain a total transmission along one output line
keeping the other line unaffected

d1 = d2 =
d0
2

+ ε, (17)

d5 = d2, (18)

d3 = d4 =
d0
2

+
ε

2
, (19)

d′0 = d0 + 3ε, (20)

d6 = d3 (21)

where ε represents the detuning between the lengths of the
different guides constituting the demultiplexer. Figure 9
gives the variation of transmission coefficients T1 and
T2 and reflection coefficient R as a function of the fre-
quency f for different values of ε around ε = 0. From
Figure 9 one can see that both resonances are of Fano
type that is a resonance near a transmission zero. In addi-
tion, both resonances present different asymmetric line
shapes (i.e., opposite Fano parameters [1]) in order to
achieve a full transmission in one line and no signal in
the other line. We can notice that for ε = −0.925 cm for
example (Fig. 9a), the transmission along the first out-
put (continuous curve) is unity (T1 = 1) at f = 1803Hz,
the transmission along the second output T2 (discontinu-
ous curve) and the reflection R (dotted curve) vanish (i.e.
T2 = R = 0). Similarly, when the transmission along the
second line (discontinuous curve) reaches unity (T2 = 1)
at f = 1640Hz, the transmission along the first line T1
(continuous curve) and the reflection R (dashed curve)
vanish (i.e., T1 = R = 0). Also, there exists a frequency
between the two resonances for which the reflection along
the input line reaches almost unity (R ' 1), while the
transmission along the first line T1 (continuous curve)
and the transmission along the second line T2 (discon-
tinuous curve) vanish (i.e., T1 ' T2 ' 0). This behavior
does not exist in the case of AIT resonances (Fig. 8). In
addition, we can see that for ε < 0, the resonance in the
second line falls below the one in the first line (Fig. 9a)
and when ε increases both resonances fall close to each
other and their widths decrease (Fig. 9b). For ε = 0, both
resonances fall at the same frequency (around 2000 Hz),
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Fig. 9. Variation of the transmission spectra along the output
1 (continuous curve), the output 2 (discontinuous curve) and
the reflection in the input (dotted curve) of the demultiplexer
as a function of the frequency f for different values of ε and for
d0 = d1 + d2 = 8.57 cm.

their widths vanish giving rise to bound in continuum
states [44]. For ε > 0, the resonance in the second line
falls above the one in the first line (Fig. 9c); its width
increases when ε increases (Fig. 9d). These results are
summarized in Figure 10 where we have plotted the fre-
quencies of both resonances as function of ε. We can see
that contrary to Figure 3, the frequencies of both Fano
resonances depend on ε. Also, the quality factors of the
two resonances (not shown here) are almost identical and
tend to infinity when ε tends to zero. Finally, the ampli-
tude of the filtered resonances in Figures 8 and 9 can be
affected considerably when loss is taken into consideration
in particular for narrow resonances as in Figure 5.

Fig. 10. Variation of the frequencies of the two Fano resonances
as a function of ε.

4 Conclusion

In this work we have studied a Y-shaped acoustic demul-
tiplexer based on two different configurations. The first
demultiplexer is based on a cross structure, in this case
we used the AIT-type resonances presented by such struc-
tures to realize a perfect demultiplexing. We have given
the analytical expressions of the lengths of the different
guides to achieve a total transmittance in one output line
canceling at the same time the reflection and transmis-
sion in the other lines. By taking into account the loss in
the guides, we have shown that the property of demulti-
plexing still remains valid, however the amplitude of the
output signal does not reach unity. In the second con-
figuration we have studied the U-shaped structure for
the design of the demultiplexer. In this case, we have
shown two possibilities of demultiplexing by using either
AIT symmetrical resonances or Fano asymmetrical res-
onances. In both cases we have determined analytically
the expressions of the lengths of the different guides to
get the total transmission in one output line keeping the
other lines unaffected. For both demultiplexers, we have
shown that the frequencies of the filtered resonances as
well as their widths (i.e., the quality factors) can be tuned
by appropriately choosing the lengths of the different
waveguides constituting these systems. The confinement
of the filtered and stopped resonances along each line are
shown through an analysis of the displacement field. The
experimental results predicted in this work can be easily
validated by simple experiments in the audible frequency
range [13,14,33].

Supplementary Material

Transmission and reflection coefficients for cross and
U demultiplexer structures using the Green’s function
method.

The Supplementary Material is available at https://
www.epjap.org/10.1051/epjap/2020190324/olm.
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