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Abstract. In this paper we present numerical and experimental methods aimed to study the evolution in
space and time of a slowed supersonic beam. These generic methods are applicable to a variety of beams
and decelerating techniques. The present implemented experimental set up is based upon Zeeman slowing
of a metastable atom beam. The detection uses a channel-electron multiplier and a delay-line detector
allowing time-of-flight analysis and numerical image reconstruction. In particular a depopulation effect at
the centre of the beam is evidenced. In view of quantifying the slowing process, Monte Carlo calculations
based on rate-equations are detailed.

1 Introduction

Mechanical effects induced by light forces, as deflection,
focalisation, cooling of atoms by lasers, has become an
important and widely studied field, both theoretically [1,2]
and experimentally [3–5], in the larger domain of interac-
tion of light with atoms. From the theoretical point of
view, in many cases – including the present one – a semi-
classical approximation, along the lines defined in refer-
ence [6] and elsewhere, is justified, which greatly
simplifies the treatment of the external motion since the
atom is considered as a point-like particle characterized by
its position r and velocity v. Recently many experiments
based on atom – light interactions gained in interest due to
the need of slowing and trapping novel species, such as 3D
trapping of Yb Rydberg atoms [7]. A global understand-
ing of the process became necessary to increase slowing
efficiencies and trapping rates, especially for heavy atoms
of special wavelengths at which low powers are available,
e.g., lasers in the 400 nm range.

Since the seminal work by Phillips and Metcalf [4]
followed in particular by Aspect et al. [8], many progresses
have been accomplished in the field of slowing atoms.
Originally the proposed slowing process – so-called
Zeeman slower – was based upon a resonant atom-light
interaction within a special magnetic field profile.
The first slowing of metastable neon atoms has been
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realized by Shimizu et al. [9] who used basically the same
method, with an adapted wavelength. Many papers have
been dedicated to the behaviour of an atomic beam dur-
ing the slowing process, but they all consider a special
type of experiment, namely a standard atomic source pro-
viding an effusive thermal beam which is then collimated,
and further slowed down by a Zeeman slower. Since the
work of Blatt et al. [2], numerical simulations have been
performed as well as experimental investigations [10–14]
with, in most cases, the goal of obtaining a high bril-
liance slowed beam able to efficiently load a magneto-
optical trap. At the time of these previous works,
computing capabilities were surely limited compared to
what they are nowadays, which has led authors to develop
remarkably efficient schemes aimed to handle by many
aspects (if not exhaustively) atomic motion in light beams.
More recently, light-atom interaction processes have been
the subject of detailed investigations [15,16], some of them
involving metastable atom beams and using Monte Carlo
simulation in theoretical treatments [17].

We describe here a novel method of calculation that
can be applied to different types of slowing processes as
well as to any type of atom or molecule. In this method,
owing to the recent progress in calculus resources, the
behaviour of atoms in a beam during the slowing process is
analysed step by step, using a Monte Carlo scheme. It will
allow us to get calculated 2D images and radial profiles of
the slowed beam. Other important characteristics as the
coherence radius, the angular aperture, etc. are also
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Fig. 1. Principle scheme for the Zeeman slowing of a supersonic Ar* beam. From a point-like source S(0, 0, 0, ToF0) Ar*(3P2)
atoms propagate through the first and second Zeeman coils ZI and ZII. The 811.531 nm resonant laser counter-propagates from
the gold mirror to focus point zfoc, decelerating the atoms by radiative force. Finally, atoms experience a free-flight zone from the
gold mirror coordinate to the delay-line-detector (DLD80). In the lower part, some important points and their spatio-temporal
coordinates are given.

available. Since the 3D atomic motion within the laser
field is considered, border effects can be studied, while
they were not directly accessible by a simple use of the
radiative force model.

Experimentally, the use of a double detection, first by
a channel-electron multiplier, second by a delay-line detec-
tor (DLD80 from Roentdeck) located at a larger distance,
allows us to determine the final atom velocity within a few
percent accuracy. Moreover the DLD80 provides us with
transverse beam profiles that can be readily compared to
results of numerical calculations. It is finally shown that
the experimental characteristics of the slowed beam are
equivalent to the calculated ones, assuming a point-like
source, which represents the lowest limit accessible exper-
imentally.

2 Experimental set-up

2.1 Production and deceleration of metastable
argon atoms

The experiment is based upon a high-brilliance super-
sonic beam of metastable argon atoms (Ar* 3P2), with a
10−6 efficiency [18,19]. Thanks to the metastability
exchange process [20–22], the resulting flux of Ar* atoms
(109 atoms s−1) is satisfactory as well as the kinemat-
ical properties of the beam (angular width δθFWHM =
0.7 mrad, velocity dispersion δv/v = 5%).

The beam deceleration uses a standard Zeeman slower.
It consists in a counter propagating, σ+ polarized infra-
red laser beam coupled to a special profile of magnetic
field aimed to maintain Ar*(3P2) atoms at resonance, by
a compensation of the local Doppler shift by an appro-
priate Zeeman shift. The laser system is an extended cav-
ity diode, locked on the 3P2−3D3 transition wavelength
(811.5 nm), and coupled to an amplifier which provides a
power of up to 120 mW, i.e., up to 30 mW being available
in the decelerator. The laser frequency is red-detuned by
δL = −340 MHz. The light beam is injected in the
device by means of a gold mirror the edge of which is
an ellipse (minor axis 1 cm), positioned in the ultra-high-
vacuum chamber at an angle of 45◦ with respect to the
atom beam axis z (see Fig. 1). The local detuning of an
atom of velocity v at position r(x, y, z) in the laser field
and magnetic field B(z) is given by:

Δ = 2πδL − kL(r) · v(r) + �
−1(gfmf − gimi)μBB(z),

kL is the laser wave vector, gi,f and mi,f are respectively
the initial and final Landé factors and magnetic num-
bers; μB is the Bohr magneton. The longitudinal mag-
netic field B(z) is produced by two subsequent coils ZI,
ZII. Its profile is shown in Figure 2. The initial velocity is
v0 = 560 m/s along z axis. From the resonance condition
Δ = 0, the velocity at the end of coil ZI (where B = 0) is
readily derived: vI = 275 m/s. Thanks to the current in
coil ZII, the final velocity can be tuned from vI to tens of
meter per second.
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Fig. 2. Magnetic field profile in the Zeeman slower.
The adapted profile is chosen to compensate the Doppler shift
experienced by the decelerated atoms (see text). The electric
current in the first magnetic coil is fixed IZI = 300 mA while
it is tunable in the second magnetic coil, 0 < IZII < 1.25 A.

2.2 Detection schemes

As explained previously, two different low-flux detectors
have been used: (1) a channel-electron multiplier posi-
tioned under the golden mirror used as a secondary emis-
sion plate. Once synchronized on the starting time of the
slowing process (S(0, 0, 0, 0, ToF0) in Fig. 1), it allows
us to obtain time-of-flight spectra and provides an initial-
time reference to the free propagation sequence which fol-
lows the slowing sequence; (2) a delay-line detector
(DLD80) of diameter 80 mm [23]. Being synchronized on
the same time reference as the channel-electron multiplier,
it provides us with a second time-of-flight spectrum.
The comparison with the previous one gives the mean
final velocity and the temperature in the beam. The time
resolution is 400 ps. In addition the DLD80 detector gives
time-triggered 2D images of the slowed beam, with a res-
olution of 150 μm (FWHM). The low dark noise of this
detector (0.6 count cm−2 s−1) allows us observing weak
atomic signals. Time-triggered images are easily obtained,
using a gate generator and changing the DLD80
imaging driver source code. Figure 3 shows examples of
time-triggered images and the related reconstructed radial
profiles. The laser power is 30 mW. Figure 3a corresponds
to a final velocity of 250 m s−1 (ToFdet = 7.75 ms) and
Figure 3b to a final velocity of 61 m s−1, obtained with a
current of 900 mA in coil ZII. The ovoid shadow seen in
these images is that of the golden injection mirror. Note
that the image naturally appears larger and larger as the
velocity decreases, because of the enlargement of the
angular aperture of the beam due to spontaneous emis-
sion, as it will be seen in Section 3. Figures 3c and 3d
show reconstruction of radial profiles at the same veloci-
ties, made a posteriori using a χ2 method. At the lowest
velocity, a depopulation effect appears at the borders of the
shadow, towards the centre of the slowed beam. A com-
plete understanding of this phenomenon relies with the
evaluation of the coherence radius, but this latter quan-
tity remains experimentally inaccessible, in so far as it
depends on the position and size of the slowed beam
effective source and because of the shortness of atomic

(a) (b)

(c) (d)

Fig. 3. Triggered images and reconstructed radial profiles (via
χ2 method image analysis) for slowed atoms and the corre-
sponding profiles. (a) and (c) IZII = 0 i.e., vF = 250 m/s
(b) and (d) IZII = 0.9 A, i.e., vF = 61 m/s. In (d) a depopu-
lation phenomenon appears at the centre of the slowed beam
starting from X = 17 mm towards X = 13 mm and symmet-
rical position (see text).

wavelengths. This is the interest of carrying out numeri-
cal simulations in parallel with experiments.

3 Numerical simulations

During the last three decades, Zeeman slower mechanisms
have been generally analyzed using in fine the concept of
radiative force [24–26]. This force can be expressed as:

FRAD = −1
2

�Γs0[1 + s0 + (2Δ/Γ )2]−1kL, (1)

where Γ = 2π × 5.8 MHz is the transition rate, Δ(z) is
the local detuning defined above and s0(r) = I(r)/I0 is
the saturation parameter, I(r) being the laser intensity
at point r and I0 = 1.4 mW cm−2 the saturation inten-
sity. As this force only expresses an averaged effect, it
is of little use in a detailed exploration of effects (espe-
cially edge effects) experienced by atoms travelling within
a laser beam. A more efficient – but somewhat heavier –
method is to digitize the atomic motion via a Monte Carlo
type code (noted MC-code) as a series of “absorption –
spontaneous emission” cycles. Each cycle includes an
absorption time tabs, i.e., the duration of free propagation
at some velocity vi prior to the absorption of a first pho-
ton, and an emission time tem, i.e., the free propagation
time prior a photon be spontaneously emitted by the atom
(in upper state 3D3) (see Fig. 4). Then the MC-code sim-
ulates the behaviour of an individual atom, without any
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Fig. 4. Model of the atomic motion as a succession of
“absorption-spontaneous emission” cycles. The first absorbed
photon that will be reemitted by spontaneous emission after a
time tabs (see text). tem is the free propagation time preceding
the spontaneous emission of a photon; tdiff = tabs + tem is the
diffusion time for a complete sequence.

introduction of collective or averaging effects. It may be
noted that actually such random atom-photon exchanges
have been previously considered by Vredenbregt and van
Leeuwen [27] who, on another hand, almost totally
ignored experimental details. The momentum conserva-
tion rule implies a velocity change (in fact a decrease)
each time a photon is absorbed. It is given by:

vi+1 = vi + vrec with vrec = m−1
Ar �kL the recoil velocity.

mAr is the atom mass. In our case vrec = 1.23 cm s−1.
After some random time tem, the atom, emitting a pho-
ton, decays to its lower level 3P2, experiencing a second
velocity change given by:

vi+2 = vi+1 + vrand with vrand = vrecûrand,

where ûrand is a normalized random vector whose distri-
bution reproduces the radiation diagram of spontaneous
emission. At this point, we finally introduced two random
variables tabs, tem plus a random vector ûrand, the proba-
bility densities of which have to be determined.

3.1 Free propagation before absorption

A major point in the present MC-code relies on the
determination of the tabs probability density. Indeed cycles
as [absorption + induced emission], the period of which
only depends on laser intensity, have in general mechanical
effects on atom trajectories (optical dipolar or intensity-
gradient forces). Possible effects of dipolar forces under
the present experimental conditions have been examined.
The most critical place is located at 3 cm before the
entrance of the Zeeman slower where the red detuning is
large (−340 MHz) and the intensity gradient is the most
important (there is the focus point of the laser beam, with
a waist w ≈ 0.25 mm). Nevertheless the magnitude of
the radial (focussing) dipolar force does not exceed 4% of
the longitudinal “Zeeman” force. Its effect on fast atom
(560 m/s) over this short path is negligible, the trajectory
being shifted by no more than 1.15 μm towards the beam
axis.

In principle the tabs probability density can be derived
from the so-called “diffusion rate” (see [28], p. 25):

Γdiff = −1
2
Γs0[1 + s0 + (2Δ/Γ )2]−1. (2)

It corresponds to the ensemble [absorption + spontaneous
emission], to which is associated the random variable
tdiff = tabs + tem. Its probability density is (taking in
account that tdiff ≥ 0):

ρdiff(ξ) = Θ(ξ)Γ−1
diff exp(−Γ−1

diffξ), (3)

here ξ is a possible value of the random tdiff and Θ is
the Heaviside function. Actually, in this game, the present
choice we just made of tdiff as a “master variable” is
arbitrary.

The probability density of tem, under conditions tdiff ≥
tem ≥ 0, can be written as:

ρem(ξ, ζ) = Θ(ξ − ζ)Θ(ζ)Γ−1

×[1 − exp(−Γ−1ξ)]−1 exp(−Γ−1ζ), (4)

where ζ is a possible value of tem. The factor
[1−exp(−Γ−1ξ)]−1 in equation (4) is a normalizing factor
such that, as needed, for any positive value of ξ, one has:∫ ξ

0
ρem(ξ, ζ)dζ = 1.
Actually distributions of the type (3) and (4) imply

a Poisson distribution of events in a given interval
of time. To test the validity of this implicit assumption
we have evaluated the so-called Q-Mandel’s parameter,
previously considered by Cook [29]. In this evaluation,
typical values of variables involved in Q have been
taken, namely β = 2.62 MHz (half the Einstein coeffi-
cient A for the 3P2−3D3 transition in argon), Ω the Rabi
frequency, here about 0.8 MHz; the detuning Δ is
much smaller than β. Under such conditions, we find
Q = −0.127. In absolute value Q is sufficiently small com-
pared to 1 to reasonably assume an almost pure Poisson
distribution.

It is readily seen that, because of the factor Θ(ξ−ζ) in
equation (4), random variables tdiff and tem are not inde-
pendent. As a consequence, the probability density ρabs

of tabs cannot be obtained using a simple convolution.
To a given couple of values ξ, ζ of random variables tdiff ,
tem corresponds one point in plane (ξ, ζ). The probability
to strictly get this point is zero, but it is no longer the
case for getting a point within an elementary surface of
area dS containing this point, for which the probability is
ρdiff(ξ)ρem(ζ)dS. The question now is: what is the proba-
bility to find the random variable tabs = tdiff − tem within
a given small interval [η, η + dη]? This probability has the
form dηρabs(η), where ρabs(η) is the researched probabil-
ity density of tabs. The domain Δ in plane (ξ, ζ), which
corresponds to condition η ≤ tabs ≤ η + dη, is a narrow
strip limited by two lines parallel to the bissextile line,
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(a) (b)

Fig. 5. (a) Domain of variation of x and z and domain Δ for an infinitesimal variation of η (see text), (b) probability density
of random variable tabs. Full line: from equation (5a); dashed line: from equation (5b); open circles: from direct statistical
simulation (see text).

crossing the ξ axis at abscissas η, η + dη (see Fig. 5a).
One readily gets:

dηρabs(η) =
∫ ∫

Δ

ρdiff(ξ)ρem(ξ, ζ)dξdζ

=
∫ ∞

η

dξρdiff(ξ)
∫ ξ−(η+dη)

ξ−η

dζρem(ξ, ζ)

= dη

∫ ∞

η

dξρdiff(ξ)ρem(ξ, ξ − η)

= dη
1
2
ΓdiffΓ exp(−Γdiffη)

×2F1

[
Γdiff + Γ

Γ
, 1, 1 +

Γdiff + Γ

Γ
, exp(−Γη)

]

,

(5a)

where 2F1 (a, b, c, u) is the hyper geometric function.
Figure 5b shows this probability density compared to nu-
merical results obtained with diffusion times randomly
generated over 106 iterations, from which independent
randomly generated emission times are subtracted. Also
shown is a simplified expression of ρabs, easier to use in
the MC-code, namely:

ρabs(η) ≈ (Γ−1
diff − Γ−1) exp[−(Γ−1

diff − Γ−1)η]. (5b)

It under-estimates the probability of the lowest values of
tabs, which is of little importance since 〈tabs〉 rapidly
departs from low values. For sake of simplicity and shorter
computing times, the forthcoming MC-code will use
expression (5b). Random values of tabs are generated by:

tabs = − (
Γ−1

diff − Γ−1
)
log[Rn[{0, 1}]], (6)

where Rn[{a, b}] is a random number uniformly distrib-
uted over interval {a,b}.

At time ti+1 = ti + tabs (see Fig. 4), the atom velocity
becomes:

vi+1 =
∑

α=x,y,z

[(vi + �M−1
Ar kL) · êα]êα. (7)

The light wave-vector kL at position r is derived from
the definition of equal phase surfaces in a Gaussian laser
beam focussed at point (0, 0, zfoc). Setting z′ = z − zfoc,
Ξ = πw2

0/λ (co focal parameter, w0 being the minimal
waist of the laser beam), and F 2 = z′2 + Ξ2, one gets:

kL(r) = k

⎛

⎝
−F−2z′x
−F−2z′y

−1 − F−2Ξ/k − 1
2 (x2 + y2)F−4(Ξ2 − z′2)

⎞

⎠.

(8)

3.2 Spontaneous emission

The propagation of the atom in upper state 3D3 is free for
a random time tem generated similarly as tabs (Eq. (6))
by:

tem = −Γ−1 log[Rn[{0, 1}]]. (9)

Afterwards the atom decays to its lower level 3P2, sponta-
neously emitting a photon. As the laser light is polarized
σ+, one can show [28,30] that the velocity vector after
this emission is:

vi+2 = vi+1 + �M−1
Ar kûem, (10)

ûem is a random unit vector whose polar angles θ and φ
are given by:

θ =
−1 + (2μ +

√
1 + 4μ2)2/3

(2μ +
√

1 + 4μ2)1/3
and φ = 2πν, (11)

with μ = Rn[{−1, 1}] and ν = Rn[{0, 1}].

3.3 2D numerical imaging, characterization of the
slowed beam

Important by-products of Monte Carlo simulation are
(i) a 2D imaging of the slowed beam, in plane (êx, êz),
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(a)

(b)

Fig. 6. Temporal structure of the slowed Ar beam. We com-
pare experimental (a) and numerical (b) spectra obtained for
a current IZII = 0.9 A in the second magnetic coil ZII and
an effective laser power of 30 mW. In (b), 3P0 atoms that are
non-sensitive to the slowing process are not shown. The tinted
(grey) zones in the two spectra show the good matching (typ-
ically 5%) between experimental and calculated data.

which gives both position and size of the effective source;
(ii) time of flight (ToF) spectra, the comparison of
which with experimental data tests the validity of our
theoretical approach (Sect. 3.1). Figure 6 presents such
a comparison of an experimental spectrum (upper part)
acquired using the DLD detector and the corresponding
calculated one (lower part). It is seen that a structure
appears in both spectra (peak at ToF = 7.75 ms and
7.65 ms respectively in experiment and simulation).
It represents atoms decelerated by the first Zeeman
coil (ZI) but not captured by the second one (ZII) because
they move outside of the laser beam. Indeed a simulation
using a laser beam of a twice larger diameter shows
that under this condition all atoms are transferred at
ToF = 20.4 ms.

The 2D-imaging process consists of a collection of
5×103 atoms displayed over 106 positions. The free prop-
agation zone located in between the two detectors (see
Fig. 1) is 0.625 m long. Using the ToF spectra generated
by these two detectors, one can determine the final veloc-
ity vF with an accuracy of 10%. Figure 7 shows calculated
and observed evolutions of this velocity with respect to the
current IZII in coil ZII. The discrepancy between calcu-
lated and measured values never exceeds 5%. As expected
vF is a linear function of IZII.

Fig. 7. Evolution of calculated and measured final velocity
with respect to the current IZII in coil ZII. Black filled cir-
cles represent numerical data and open circles with error bars
represent the experimental points.

Figure 8 illustrates another possible issue of our MC
simulation, namely the lateral profile imaging of slowed
beams, in (a) for vF = 250 m/s, in (b) for vF = 61 m/s.
Coherence parameters and angular aperture Δθ are then
readily accessible (see Tab. 1). In general, the coherence
radius Rc of an atom source of size aS at a distance DS

from a pair of Young slits is defined as the largest dis-
tance between slits for which observable interferences are
seen, i.e., Rc = 0.257λatDS/aS where λat is the de Broglie
wavelength [31]. Experimentally Rc is difficult to measure
especially because of the shortness of λat, while such a
measurement has been made in the case of a thermal
supersonic beam [32].

The abrupt increase of Δθ at velocities lower than
150 m/s practically forbids the use of such slowed beams
in scattering or interferometry experiments, except if a
strong collimation and/or focalisation are made. Correla-
tively, the coherence radius dramatically decreases
(Fig. 9), which is a consequence of the large number
(20 000 to 40 000) of spontaneous emissions – and the
related random components added to its velocity –
experienced by a slowed atom. This finally leads to a quasi
total loss of coherence.

3.4 Time-triggered imaging

In this section experimental and simulated time-triggered
images are compared. Numerical imaging is simply real-
ized by backing-up atom parameters (position r(x, y, z),
velocity v(vx, vy, vz), time-of-flight ToF, number Nph of
absorbed photons) and plot their spatial density, for the
5 × 106 atoms involved in the calculation. This numerical
treatment provides us with spatial profiles, in r, veloc-
ity distributions, in v, time-of-flight spectra and absorbed
photon density. Four important positions along the z axis
are examined, namely the end of coil ZI at zI, the end of
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(a) (b)

Fig. 8. 2D imaging of the slowed Ar* supersonic beam for two final velocities: (a) vF = 250 m/s (b) vF = 61 m/s. From these
images, one can easily extract the beam divergence and the coherence radius with respect to the position and size of the effective
source (see text).

Table 1. Evolution of coherence parameters as functions of the
final velocity vF: aS is the effective source radius (HWHM),
DS is its distance to the origin position of ToF measurements,
Rc is the mean value of the coherence radius, Δθ is the angular
aperture. The general relative uncertainty is about 0.3%.

vF (m/s) DS (m) aS (mm) Rc (nm) Δθ (mrad)
250 0.31 0.21 490 12
205 0.68 0.79 130 12
185 0.83 1.0 102 15.5
147 0.97 1.3 97.5 17
107 1.3 2.0 61 32
60 1.3 3.5 60 48
47 1.35 4.7 57 98

coil ZII at zII, the golden mirror at zmir, the DLD detector
at zdet.

Figure 10 shows the experimental radial profile of the
61 m/s- slowed beam (from Fig. 3d) together with the
numerical simulation, for a laser power PL = 30 mW,
a beam diameter dL = 8 mm at zmir, focussing at zfoc =
0.9 m. It is seen that, except at the centre (mirror shadow)
the agreement is excellent, within an uncertainty of 5.3%
which can be explained by: (i) an uncertainty of 3% on
the distance chopper-detector, (ii) the modelling of the
mirror by an infinite plane, ignoring possible distortion
coming from the lateral part of the laser beam (see Fig. 1),
(iii) the assumption of a perfect alignment of atom and
light beams, (iv) the assumption that atoms are initially
emitted from a point-like source.

This very good agreement obtained for both wings of
the profile makes us confident about the reality of the
depopulation effect given by the simulation at the centre
and already suggested by experimental data (see Sect. 2.2
and Fig. 3d). This depopulation is estimated to be 10%
of the initial flux and 35% of the flux of atoms actually
captured and slowed down by coil ZII. It is essentially due
to laser pressure which is especially important at the cen-
tre. Indeed, for fully decelerated atoms, that permanently

50 100 150 200 250
0

20

40

60

80

100

Final velocity (m/s)

Fig. 9. Dashed line, open circles: angular beam aperture Δθ
in mrad; full line, open triangles: coherence radius Rc divided
by 5, in nm.

Fig. 10. Superposition of the 61 m/s slowed beam radial pro-
file (bold red line) (cf. Fig. 3d) and numerical profile calcu-
lated using the MC-code. The agreement between theory and
experience in the wings represents 5.3% accuracy, and the
depopulation ratio is estimated to be 10% (see text).
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(a) (b)

Fig. 11. (a) Numerical profile for vF = 61 m/s with PL = 115 mW and dL = 16 mm, (b) numerical profile for vF = 61 m/s
with PL = 15 mW and dL = 8 mm.

move within the laser beam, centrifugal motions (making
atoms leaving the centre) are more likely for low veloc-
ities and large numbers of absorbed photons. More gen-
erally, the role of the saturation parameter s0, i.e.,
at resonance, the only parameter involved in the radiative
force (Eq. (1)), is essential in the space-time dynamics of
any slowed beam. As an example, Figure 11 shows radial
profiles calculated with 2 different sets of laser beam
parameters leading to different values of s0, namely
(a) laser power PL = 116 mW, laser beam diameter dL =
1.6 cm (at z = zmir), s0 = 14.30, (b) PL = 15 mW,
dL = 0.8 cm, s0 = 7.46. In the former case, the depop-
ulation reaches 18% of the total flux (instead of 10% in
Fig. 10) whereas in the latter case this depopulation
effect has completely disappeared. Present simulations
have been obtained assuming an initial atomic beam
strictly monokinetic and emitted by a point-like source.
The more realistic case of an extended source (size σx =
σy ≈ 1 mm) having a transverse velocity dispersion (σv ≈
1.1 m/s) has been also examined. These dispersions do not
alter the present results by more than 5.3%.

4 Conclusion

Experimental and numerical methods to investigate the
slowing process of an atomic beam using a laser have been
described. With some adjustments these methods can be
generalized to other slowing techniques [33,34] as well as
to other species. The basic idea in this simulation is to
model the atomic path as a random walk over a sequence
of ten thousands of absorption – spontaneous emission
cycles. This implies to determinate the distribution of ran-
dom absorption times from known diffusion and emission
rate constants.

Numerical determination of angular aperture and
coherence radius of the slowed beam has been achieved
using a 2D Monte Carlo imaging. This simulation appears
to be a powerful method to determine these important
parameters, some of them – as the coherence radius –
being difficult to be obtained experimentally. From avail-
able local densities, the feasibility of non-coherent atom

optics experiments with slowed beams at “medium”
velocity [35] can be demonstrated. The present calcula-
tions are made assuming the initial (supersonic) beam
emitted from a point-like source, which represents the best
accessible limit in terms of angular aperture after slow-
ing. The very good agreement with experimental values
obtained for this angular aperture indicates that the
supersonic beam source is indeed point-like to a very good
approximation. Moreover triggered imaging explains spe-
cial effects exhibited by the experiment. Actually these
effects, intrinsically linked to our experimental stet-up,
consist of a de-population at the centre of the beam and
correlatively the emergence of a partially slowed peak in
the time-of-flight spectrum, two effects in which the satu-
ration parameter plays a crucial role. The present numer-
ical method has already given results of good quality1.

At a first sight, the conclusion about the use of sim-
ply slowed beams in scattering experiments at low veloc-
ities is pessimistic because of the wide angular spread
and poor coherence radius. For example, to be used at
a velocity of a few tens of m/s, such a beam needs to be
strongly collimated or better focussed. Again a laser beam
is an efficient tool for this purpose and its interaction with
atoms could be accurately characterized by means of the
present MC-code. Actually any configuration combining
resonant light and atoms is relevant (provided that the
semi-classical approximation is valid), in particular the
use of a “pushing” laser to generate a slow atomic beam
from a magneto-optical trap, a technique which has been
successfully tested with metastable argon atoms [36].

Authors are members of the Institut Francilien de Recherche
sur les Atomes Froids (IFRAF). They wish to warmly thank
P. Pedri and L. Vernac from the Laboratoire de Physique des
Lasers, University Paris 13, for stimulating discussions and
their help for the numerical model. Many thanks are also due
to T. Billeton from the same lab, who built the golden mirror,
a key element of our experimental device.

1 The method has been successfully applied to a Zeeman
deceleration of an Ytterbium beam and it is currently being
extended to 2D and 3D magneto-optical traps.
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