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Abstract. This paper calculates the electric and magnetic fields and the Poynting vector around two
infinitely long parallel cylindrical conductors, carrying a DC current. Also the charges on the surface of
the wire are calculated, and their distribution is visualized. The wire is assumed to be perfectly electrically
conducting. Furthermore, the Hall effect is ignored. In the literature [S.J. Orfanidis, Electromagnetic waves
and antennas, 2008], the problem of determining the electric field is usually tackled using an equivalent
model consisting of two line charge densities, producing the same electric field. In this work, the Laplace
equation is rigorously solved. The authors found no work explaining the solution of the Laplace equation
with boundary conditions for this problem and hence thought it was useful to dedicate a paper to this
topic. The method of separation of variables is employed and a bipolar coordinate system is used. After
solving the appropriate Sturm-Liouville problems, the scalar potential is obtained. Taking the gradient
yields the electric field.

1 Problem description

Two cylindrical wires, each conducting a DC current I,
are parallel to the z-axis (Fig. 1). The first wire is located
at x = −d and conducts the current in the positive
z-direction. The other wire is located at x = d and con-
ducts the current in the negative z-direction. The left wire
has a potential V1 and the right wire −V1. We wish to
determine the scalar potential, the electric and the mag-
netic field in the region outside the conductors. The cross-
section of the right wire is bounded by a circle, called C1.
The wires are assumed to be perfectly electrically con-
ducting, that is they have zero resistivity.

The electric potential φ is given by the Laplace equa-
tion:

∇2φ = 0. (1)
We will solve this equation using an appropriate coordi-
nate system: bipolar coordinates.

2 Bipolar coordinates

The bipolar coordinate system [4] is defined as
(τ ∈ (−∞,∞) and σ ∈ [0, 2π] and ¬(σ = τ = 0)):

x = α
sinh τ

cosh τ − cos σ
, (2)

y = α
sin σ

cos τ − cos σ
. (3)
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Fig. 1. Geometry of the problem.

The curves of constant σ form non-concentric circles cen-
tered on the y-axis:

x2 + (y − α cot σ)2 =
α2

sin2 σ
. (4)

The radius decreases as σ increases in the interval [0, π/2]
and increases again with increasing σ in the interval
[π/2, π]. The curves of constant τ form non-concentric cir-
cles centered on the x-axis:

(x − α coth τ)2 + y2 =
α2

sinh2 τ
. (5)
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Fig. 2. Bipolar coordinate system: curves of constant τ
(dashed) and constant σ (solid).

The radius decreases as τ increases from −∞ to 0 and
increases as τ increases from 0 to ∞. For τ < 0 the circles
lie in the x < 0 half-plane, for τ > 0 the circles lie in the
x > 0 half-plane.

The circles of constant τ respectively constant σ are
depicted in Figure 2.

For the problem of determining the electric scalar po-
tential in the region outside the two wires, also the bound-
ary conditions are rewritten in terms of bipolar coordi-
nates.

3 Boundary conditions

The electric scalar potential on the surface of the wires is
known from the problem description: φ = V1 on the cir-
cumference of the circle C1, with center (0, d) and radius a.
C1 coincides with a circle of constant τ (cf. (5), [4]), if{

d = α coth τ,

a =
α

sinh τ
.

(6)

We thus have:

d = α coth τ =
α

sinh τ︸ ︷︷ ︸
=a

cosh τ = a cosh τ.

Let us call the τ for which this circle C1 is defined, τc. We
have cosh τc = d/a, and C1 is thus defined by the single
τ -coordinate:

τc = cosh−1 d

a
. (7)

We can also calculate α from the second equation of (6):

a2 =
α2

sinh2 τc

=
α2

cosh2 τc − 1
=

α2(
d2−a2

a2

) .

Thus:
α =

√
d2 − a2. (8)

Similarly, the surface of the second conductor corresponds
to points in the (τ, σ)-plane with τ = −τc. Here, φ = −V1.

4 Formulation of the problem in bipolar
coordinates

The scalar potential φ has to obey the Laplace partial
differential equation in bipolar coordinates [2]:

∇2φ =
1
α2

(cosh τ − cos σ)2
(

∂2φ

∂σ2
+

∂2φ

∂τ2

)
= 0. (9)

Therefore, as long as ¬(σ = τ = 0),

∂2φ

∂σ2
+

∂2φ

∂τ2
= 0, (10)

with boundary conditions:

φ(σ, τ = τc) = V1, σ ∈ [0, 2π], (11)
φ(σ, τ = −τc) = −V1, σ ∈ [0, 2π], (12)

where φ is a periodic function in σ with a period equal to
2π, and τc as defined in (7).

In order for a particular boundary value problem to be
solvable using the method of separation of variables, cer-
tain conditions have to be met. These conditions involve
(a) the differential equation itself as well as (b) the shape
of the boundary and (c) the form of the boundary condi-
tions (cf. [3], p. 68). It can be easily verified that (10) is
separable (condition (a)). Since the boundary conditions
are imposed on coordinate lines and are constants, condi-
tions (b) and (c) are fulfilled.

5 Solution of the Laplace equation with
boundary conditions

The method of separation of variables is applied. This
means that the solution for the potential φ is written as
the product of single-variable functions:

φ(σ, τ) = S(σ)T (τ). (13)

When we fill this equation into the Laplace equation (9),
we must solve a system of two differential equations:

S′′(σ) − kS(σ) = 0, (14)
T ′′(τ) + kT (τ) = 0. (15)

This has different solutions depending on the sign of k.

5.1 Case k = 0

If k = 0 then (14) and (15) become

S′′(σ) = 0,
T ′′(τ) = 0.

The solutions for which are:

T (τ) = A0 + A1τ, (16)
S(σ) = B0 + B1σ. (17)

But because S(σ) is periodic in σ, we must demand that
B1 = 0. We thus have:

T (τ) = A0 + A1τ , (18)
S(σ) = B0. (19)
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5.2 Case k > 0

If k > 0, then the general particular solution of (14) is:

S(σ) = C1 cos(
√

kσ) + C2 sin(
√

kσ).

However, because S(σ) is periodic in σ with period 2π,√
k = n where n is a whole number, greater than 0. The

solution for S(σ) is thus:

S(σ) = Dn cos(nσ) + En sin(nσ). (20)

The solution for T (τ) is:

T (τ) = Fn cosh(nτ) + Gn sinh(nτ). (21)

5.3 Case k < 0

If k < 0 then the general solution of (14) is:

S(σ) = C3 cosh(
√

kσ) + C4 sinh(
√

kσ).

However, because S(σ) is a periodic function in σ, this so-
lution is not feasible. We can only allow non-negative k’s.

5.4 Solution of φ

The scalar potential φ(σ, τ) is a linear combination of the
solutions for every k-value and has the form:

φ(σ, τ) = (A0 + A1τ)B0 +
∞∑

n=1

[(Dn cos(nσ)

+ En sin(nσ))(Fn cosh(nτ) + Gn sinh(nτ))] .
(22)

We now impose the remaining boundary conditions (11)
and (12):

5.4.1 Use of boundary condition (11)

Imposing boundary condition (11) on (22) leads to:

φ(σ, τ = τc) = (A0 + A1τc)B0

+
∞∑

n=1

[Dn(Fn cosh(nτc) + Gn sinh(nτc)) cos(nσ)

+ En(Fn cosh(nτc) + Gn sinh(nτc)) sin(nσ))] = V1.

(23)

This is a Fourier series of the constant function V1. Equa-
ting the corresponding coefficients results in:

(A0 + A1τc)B0 = V1, (24)

Dn(Fn cosh(nτc) + Gn sinh(nτc)) = 0 ∀n ≥ 1, (25)

En(Fn cosh(nτc) + Gn sinh(nτc)) = 0 ∀n ≥ 1. (26)

5.4.2 Use of boundary condition (12)

Imposing boundary condition (12) on (22) leads to:

φ(σ, τ = τc) = (A0 − A1τc)B0

+
∞∑

n=1

[Dn(Fn cosh(nτc) − Gn sinh(nτc)) cos(nσ)

+ En(Fn cosh(nτc) − Gn sinh(nτc)) sin(nσ))] = −V1.

(27)

This is a Fourier series of the constant function −V1.
Equating the corresponding coefficients results in:

(A0 − A1τc)B0 = −V1, (28)

Dn(Fn cosh(nτc) − Gn sinh(nτc)) = 0 ∀n ≥ 1, (29)

En(Fn cosh(nτc) − Gn sinh(nτc)) = 0 ∀n ≥ 1. (30)

5.4.3 Solving for the coefficients of linear combination (22)

Adding and subtracting equations (24) and (28) gives:

A0B0 = 0, (31)

A1B0τc = V1. (32)

Similarly (25) and (29) result in:

DnFn = 0 ∀n ≥ 1, (33)

DnGn = 0 ∀n ≥ 1. (34)

And finally from (26) and (30) it follows that:

EnFn = 0 ∀n ≥ 1, (35)

EnGn = 0 ∀n ≥ 1. (36)

Using these expressions, φ can be written as:

φ(τ) =
V1

τc
τ. (37)

From the definition of the bipolar coordinate system, equa-
tion (2), it can be seen that the y-axis, for which x = 0,
corresponds to points in the (τ, σ)-plane with τ = 0.
Hence, it is interesting to note that, as could be expected
from the symmetry of the problem, φ(x = 0) = φ(τ =
0) = 0. However, the presented solution did not assume
any prior knowledge about electrostatic field solutions.
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6 Expressing the scalar potential in Cartesian
coordinates

Making use of (5), and the identity cosh2 τ − sinh2 τ = 1
we get:

(x − α coth τ)2 + y2 =
α2

sinh2 τ

=
α2

sinh2 τ
(cosh2 τ − sinh2 τ)

= α2 coth2 τ − α2

⇓
x2 − 2αx coth τ + α2 coth2 τ + y2 + α2 − α2 coth2 τ = 0

=⇒ coth τ =
x2 + y2 + α2

2αx
.

And thus:

τ = tanh−1

(
2αx

x2 + y2 + α2

)
. (38)

The complete solution for the scalar potential in Cartesian
coordinates is thus:

φ(x, y) =
V1

cosh−1 d
a

tanh−1

(
2x

√
d2 − a2

x2 + y2 + d2 − a2

)

=
V1

cosh−1 d
a

ln

√
x2 + y2 + α2 + 2αx

x2 + y2 + α2 − 2αx
.

φ(x, y) =
V1

ln
(

d
a +

√
d2

a2 − 1
) ln

√
(x +

√
d2 − a2)2 + y2

(x − √
d2 − a2)2 + y2

.

(39)

7 Electric field

Because the wires are assumed to be infinitely long and to
have zero resistivity, the electric field is independent of the
z-coordinate. The electric field outside the two conducting
wires is thus:

E(x, y) = −∇φ (40)

E =
2(x2 − d2 + a2 − y2)

√
d2 − a2V1

N
× ex

+
4V1xy

√
d2 − a2

N
× ey, (41)

where

N = ((x +
√

d2 − a2)2 + y2) ln

(
d

a
+

√
d2

a2
− 1

)

× ((x −
√

d2 − a2)2 + y2). (42)

8 Magnetic field

A DC current I flows in the positive z-direction in the wire
at x = −d, and a DC current of I flows in the negative
z-direction in the wire at x = d.

Call H1 the magnetic field outside the two conductors,
produced by the conductor at x = −d and H2 the mag-
netic field outside the two conductors, produced by the
conductor at x = d. We have:

H1 =
I

2π
√

(x + d)2 + y2
, (43)

H2 =
I

2π
√

(−x + d)2 + y2
. (44)

8.1 Magnetic field in the region between the two
wires: –d ≤ x ≤ d

With θ the acute angle between the x-axis and the line
from (−d, 0) to (x, y) and γ the acute angle between the
x-axis and the line from (d, 0) to (x, y), we have:

θ = arctan
y

x + d
, (45)

γ = arctan
y

−x + d
, (46)

and

H = −H1 sin θex + H1 cos θey + H2 sin γex + H2 cos γey.

Making use of the identities sin(arctan(x)) = x/
√

1 + x2

and cos(arctan(x)) = 1/
√

1 + x2, we obtain for the mag-
netic field outside the two wires, neglecting the small Hall
effect due to which the current density is not exactly con-
stant in each wire:

H(x, y) =
Iy

2π

( −1
(x + d)2 + y2

+
1

(x − d)2 + y2

)
ex

+
I

2π

(
(x + d)

(x + d)2 + y2
+

−(x − d)
(x − d)2 + y2

)
ey.

(47)

We can see that inside this region, the dot product of the
electric and the magnetic field is equal to:

E ·H =
4Ida2V1xy

√
(d2 − a2)/

(
π ln

(
d
a +

√
d2

a2 − 1
))

N2
,

(48)
where

N2 = ((x + d)2 + y2)((x − d)2 + y2)

× ((x +
√

d2 − a2)2 + y2)((x −
√

d2 − a2)2 + y2).
(49)

This means that the electric and magnetic fields are not
orthogonal in this region, except on the x- and y-axes.
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8.2 Magnetic field in the region for which x ≤ −d

With θ the acute angle between the x-axis and the line
from (−d, 0) to (x, y) and γ the acute angle between the
x-axis and the line from (d, 0) to (x, y), we have:

θ = arctan
−y

x + d
, (50)

γ = arctan
y

−x + d
, (51)

and

H = −H1 sin θex − H1 cos θey + H2 sin γex + H2 cos γey.
(52)

Making use of the identities sin(arctan(x)) = x/
√

1 + x2

and cos(arctan(x)) = 1/
√

1 + x2, we can again express
the magnetic field in Cartesian coordinates. However, the
expression is so long that for numerically evaluating it, we
recommend that equation (52) is used.

The dot product of the electric and the magnetic field
can again be calculated. It is never zero in this region
except on the x-axis. This means that the electric and
magnetic fields are not orthogonal in this region, except
on the x-axis.

8.3 Magnetic field in the region for which x ≥ d

With θ the angle between the x-axis starting at (−d, 0)
and going to plus infinity and the line from (−d, 0) to
(x, y) and γ the angle between the x-axis starting at (d, 0)
and going to plus infinity and the line from (d, 0) to (x, y),
we have:

θ = arctan
y

x + d
, (53)

γ = arctan
y

x − d
, (54)

and

H = −H1 sin θex + H1 cos θey + H2 sin γex − H2 cos γey.
(55)

Making use of the identities sin(arctan(x)) = x/
√

1 + x2

and cos(arctan(x)) = 1/
√

1 + x2, we can again express
the magnetic field in Cartesian coordinates. However, the
expression is so long that for numerically evaluating it, we
recommend that equation (55) is used.

The dot product of the electric and the magnetic field
can again be calculated. It is never zero in this region
except on the x-axis. This means that the electric and
magnetic fields are not orthogonal in this region, except
on the x-axis.

9 Surface charges on the wires

The surface density of the free charges on the surface of
the right wire, centered around x = d, is σR, and is equal

Fig. 3. Polar coordinate system, used for determining the
surface charge density.

to ε0 times the normal component of the electric field, per-
pendicular to the circle C1. Here, ε0 is the permittivity of
vacuum. The surface density of the charges on the surface
of the left wire is then, by symmetry, the mirrored image
and the negative of σR. Let us determine σR. We choose a
polar coordinate system (r, β) (Fig. 3) where r is the dis-
tance from (x, y) = (d, 0) to the observed point, and β is
the angle between the x-axis, pointing from (x, y) = (d, 0)
to infinity and the line from (x, y) = (d, 0) to the observed
point. We have, for points on circle C1, with β ∈ [0, 2π]:

x = d + a cos β, (56)
y = a sin β, (57)
ex = cos βer − sin βeβ , (58)
ey = sinβer + cos βeβ . (59)

Making these substitutions, we find a very simple form for
the radial component of the electric field:

Er(r = a, β) =
V1

√
d2 − a2

a(d + a cos β) ln
(

d
a +

√
d2

a2 − 1
) .

Hence, the surface charge density [C/m2] is:

σR = ε0Er(r = a, β) =
ε0V1

√
d2 − a2

a(d + a cos β) ln
(

d
a +

√
d2

a2 − 1
) .

(60)
This corresponds with the expression derived with the
equivalent line charge model, in [5].

10 Visualisation of solutions

With I = 1 A, V1 = 0.5 V, d = 0.01 m and a = 0.5 mm,
the following figures depict, with some contours, the
Poynting field (Fig. 4), the electric field (Fig. 5), the
magnetic field (Fig. 6) and the scalar potential
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Fig. 4. Plot of −Sz(x, y).

Fig. 5. Plot of
�

E2
x + E2

y .

Fig. 6. Plot of
�

H2
x + H2

y .

Fig. 7. Plot of φ(x, y).

Fig. 8. Vector and fieldline plot of E(x, y).

Fig. 9. Surface charge density σR on the right wire.
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(Fig. 7) outside the wires. Also, some fieldlines (Fig. 8)
of the electric field, starting at the right wire, are shown,
and the surface charge density on the surface of the right
wire (Fig. 9).

As a check, the Poynting vector was numerically
integrated over the xy-plane. We obtained 1.004 W,
corresponding well with the theoretical value of
1 V × 1 A = 1 W.
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