Fast ignition schemes for inertial confinement fusion

C. Deutsch

LPGP (UME-CNRS 8578), Bât. 210, UPS, 91405 Orsay Cedex, France

Received: 8 January 2002 / Received in final form: 17 January 2003 / Accepted: 12 June 2003
Published online: 20 October 2003 – © EDP Sciences

Abstract. The controlled production of a local hot spot in supercompressed deuterium + tritium fuel is examined in detail. Relativistic electron beams (REB) in the MeV and proton beams in the few tens MeV energy range produced by PW-lasers are respectively considered. A strong emphasis is given to the propagation issues due to large density gradients in the outer core of compressed fuel. A specific attention is also paid to the final and complete particle stopping resulting in hot spot generation as well as to the interplay of collective vs. particle stopping at the entrance channel on the low density side in plasma targets. Moreover, REB production and fast acceleration mechanisms are also given their due attention. Proton fast ignition looks promising as well as the wedged (cone angle) approach circumventing most of transport uncertainties between critical layer and hot spot. Global engineering perspectives for fast ignition scenario (FIS) driven inertial confinement fusion are also detailed.

PACS. 52.40.Mj Particle beam interactions in plasmas – 52.35.Py Macroinstabilities (hydromagnetic, e.g., kink, fire-hose, mirror, ballooning, tearing, trapped-particle, flute, Rayleigh-Taylor, etc.) – 34.50.Bw Energy loss and stopping power

1 Ignition vs. compression

Up to now, it has been impossible to obtain simultaneously the compression and the heating of a DT target because of problems related to the global efficiency of the compression. In particular, this is limited by implosion asymmetries. Those arise from the defects of the capsule manufacture, the quality of its surface finish and the nonuniformity in space and time of the laser irradiation. With a maximum acceptable defect of the final radius R_f of the pellet of about 33% [1] we obtain $\delta R_f/R_f = C (\delta v/v) \leq 1/3$. Here v is the implosion speed and $C = R_i/R_f$ the convergence ratio (ratio of the initial to the final radius of the pellet). A typical value of $C = 30$ is expected, so that the required uniformity of the implosion velocity must be better than 1%.

The small initial perturbations also give rise to different hydrodynamic instabilities, which contribute strongly to breaking down the implosion symmetry. The most important ones, the Rayleigh-Taylor instabilities [2] and the Richtmyer-Meshkov instabilities [3], grow at the interface between fluids of different densities. The Rayleigh-Taylor instabilities arise typically at the ablation front of the pellet during the acceleration phase and at the shell/fuel interface during the deceleration phase. During the intermediate stage, the Richtmyer-Meshkov instabilities, induced by the shock wave emerging from the inner surface of the shell, appear. The global effect of these instabilities is to enhance the initial perturbations until the ablative material pollutes the fuel mixture. The consequence is an important decrease of the temperature and a degradation of the compression. It can be shown that [4] the hydrodynamic instabilities become more important as the “aspect ratio” $R/\Delta R$ of the capsule is increased. A value of $R/\Delta R = 25–35$, with typically $\Delta R = 70–100 \mu m$ [5] would represent a good compromise in order to get an adequate compression.

At present, ignition has not yet been experimentally achieved, and implosion experiments have only produced either high compression, or high temperature. The maximum density reached was 600 times liquid density [6], corresponding to $\rho R \approx 0.1 g/cm^2$. During this experiment, the maximum temperature was not larger than 300 eV, insufficient to produce an appreciable number of fusion reactions. The maximum neutron yield, 2×10^{14} for a temperature of 15 keV, has been obtained for a density of only 2 g/cm3 corresponding to a convergence ratio of 4 [7]. Those results motivate, a new generation of laser facilities, including ignition with the “classic” scheme just described, and a greater energy, is under development to achieve ignition [1].

Recently, the rapid development of short-pulse laser beam technology has allowed an alternative approach to ICF: the Fast Ignitor (FI) [8]. The idea is to dissociate the fuel ignition phase from its compression. The fuel is...
Fig. 1. The three phases characterising the fast ignitor scheme. A suprathermal electron beam generated in the interaction with an ultra-intense laser brings the supercompressed fuel to ignition.

previously compressed as in the “traditional” scheme and then brought to ignition by means of an external energy sources: a short high-intensity laser beam focused on the side of the pellet.

The scheme is based on three stages [8,9] (see Fig. 1). At the moment of maximum compression (the “classic” implosion phase) a first short-pulse laser beam ($\tau \approx 100$ ps) delivering an intensity of 10^{19} W/cm2 bores a channel ($n < n_c$) in the ablated part of the capsule (“hole boring” phase), by virtue of interaction mechanisms typical of the high-intensity laser regime [10]. A second shorter ($\tau \approx 10$ ps) and more intense (10^{20} W/cm2) laser beam, aligned with the first one, can propagate in the channel towards the high-density regions of the fuel. The rapid transfer of laser energy to the compressed fuel occurs via very energetic electrons, to so-called Suprathermal or Fast electrons. The generation of fast electrons is particularly important in the case of the high-flux regime. These electrons are supposed to propagate up to the core of the compressed capsule and deposit their energy. This rapid heating creates temperatures needed to turn on the fusion reactions in a lateral, but not central, hot spot in the fuel.

The difference between the two possible approaches for hot spot generation and the achievement of ignition is shown schematically in Figure 2. In the “classic” case, from the beginning, the DT mass needed for the hot spot formation is brought to a high temperature by the converging shocks, while a slow implosion compresses the rest of the fuel. This leaves the two parts of the fuel at different temperatures. In the case of the fast ignitor, all of the fuel is compressed to a large density, so at the end of the implosion, a fraction of the DT is heated by an external source (the ultra-intense laser) to form the hot spot. The characteristic profiles of the thermodynamic quantities in the hot spot and in the main fuel are also shown in Figure 2; and isobaric [11] or isochoric [12] compression model are respectively used to describe the behaviour of the fuel during the ignition.

The fast ignitor presents distinct advantages in comparison with the usual scheme, and offers the possibility of obtaining ignition with current technological means. The expected heating is caused by an external element (the fast electron beam) on a very short time scale, much shorter than the hydrodynamic motion of the capsule. The ignition does depend neither on the simultaneous presence of the hot spot, for starting the reaction, nor on the surrounding colder compressed fuel, for the burn wave generation; this being feasible, in fact, only with a “perfect” implosion. It is hence possible to reduce significantly the constraints on the implosion symmetry which usually limit compression and heating efficiency.

At the same time, the density constraints are also reduced in comparison with those implied by the isobaric model to maintain the pressure equilibrium of the fuel. This will give a higher energy gain because less energy is used to reach high densities. More recent calculations, although less optimistic than the initial ones proposed by Tabak et al., show that, for a laser energy of about 1 MJ, the isochoric gain is nearly three time greater than the isobaric one [13].

The success of the fast ignitor scheme nevertheless depends on the electron source characteristics. The electron beam must be ‘piercing enough’ to propagate in the most compressed parts of the fuel, where the density reaches 200–400 g/cm3. At the same time, the energy deposition must be quite local (typically 10 μm) in order to form a hot spot small enough for significant heating. Moreover, the electrons must be quite energetic to heat this fuel...
fraction to ignition temperature. According to recent calculations [14], an electron beam with a characteristic temperature of 1 MeV, should have a penetration distance of around 10 μm in a fuel of density 300 g/cm³. The energy required to heat at 10 keV a mass of DT with these dimensions is about 10 kJ, corresponding to a number of electrons of 10^{16}–10^{17}. Assuming a typical conversion efficiency of laser energy into fast electrons of 10–20%, a laser delivering 100 kJ in 10 ps, which is technologically conceivable is therefore required to produce such an electron source.

More generally, the described scenario involves different aspects concerning laser-plasma interaction physics in the high-flux case, a subject of intense research all around the world, both on the theoretical as well as on the experimental level. The difficulties related to the achievement of ignition are then transferred into those concerning the propagation and coupling with matter of high-intensity short-pulse lasers. The feasibility of such a project demands a full knowledge of the implied processes, which can be summarised as:

- Channel boring in the ablated part of the capsule.
- Fast electrons generation and characterisation of the acceleration process.
- Energy transfer mechanisms of those electrons to the compressed fuel.

2 Channel boring

For the past several years, electromagnetic irradiances above 10^{18} W/cm² have been achieved by focusing the picosecond light pulses delivered by compact multiterawatt lasers operating at micrometer wavelength [15]. The associated electric field, which is higher than the electric field existing in the Bohr atom, can then instantaneously transform the matter into a plasma. Moreover, it lets the free electrons quiver with relativistic momentum; the latter normalized to $m_e c$, is indeed written as $a_0 = 0.85(I_0 \lambda_0^2 / 10^{18})^{1/2}$, where $m_e c$ is the electron mass, c is the light velocity in vacuum, λ_0 is the laser wavelength in units of μm, and I_0 is the laser irradiance in units of W/cm². It has been predicted that high irradiances, by increasing the inertial electron mass and hence decreasing the effective plasma frequency, will allow a laser to penetrate a “classically opaque” plasma.

In the standard view of laser-plasma interaction, a laser wave with wavelength λ_0 that impinges on a plasma with electron density above $n_e = 10^{21}/\lambda_0^2$ in units of cm⁻³ is partially reflected and partially absorbed by the so-called normal skin effect, resulting from the electron-ion collisions inside the wave penetration depth $c/\sqrt{\omega_{pe}^2 - \omega_r^2}$; ω_{pe} and ω_r denote the electron plasma frequency and the incident radial frequency, respectively. High electron quiver velocities result in reduced collisions and the anomalous skin effect. Particle-in-cell (PIC) simulations have clearly exhibited collisionless absorption via kinetic effects: resonant absorption and vacuum screening effect for oblique incidence [16], magnetic force $j \times B$, for normal incidence generates fast electron bursts entering the solid target. PIC simulations revealed hydrodynamic scenarios, namely, plasma pushing, hole boring, and electrostatic shock [17].

Recent results by from 14D relativistic PIC simulations that evidence a transition between an opacity regime (OR) and a transparency regime (TR), respectively characterized by the absence or the propagation of the laser wave inside the plasma (Lefebvre-Bonnaud [16]). The simulations were performed using the code Euterpe, with singly ionized mobile ions with mass $m_i = 1836 m_e$, unless otherwise specified. The plasma is assumed to be electrically neutral, with an initial temperature of 1 keV.

The differences between OR and TR are best illustrated by the electron trajectories displayed in Figure 3 for (a) OR and (b) TR at density $n_e/n_e = 2$. In the first case, the laser wave does not penetrate the plasma but pushes its surface, resulting in a large density increase and a laser reflectivity $R \approx 1$. In contrast, the plasma edge remains nearly stationary in the second case, while the laser propagates deeper and deeper in the target, setting the electrons in violent motion. Both pictures show a surface recoiling at steady velocity. When irradiance is increased, this velocity β exhibits the following features (Fig. 4a): (1) a slow linear increase corresponding to OR, (2) a jump for a critical laser strength a_{0c} (that increases with n_e), and (3) a rapid increase in TR. The frequency ω_r of the light reflected by the plasma displays opposite trends (Fig. 4b).

The critical laser amplitude a_{0c}, at which the transition between OR and TR occurs can be determined from the β or ω_r plots, but more precisely from the electron trajectories. Indeed, near a_{0c}, the transient penetration of the laser wave can be observed, during which the ions are nearly immobile. Then an ion shock forms, which values of β and ω_r are provided.

The laser electric field is expected to penetrate easily a plasma interface. Such an effect is well documented numerically by the laser squared electric field into a plasma slab with density $n_e = 1.5 n_i$ at 0.1 ps after the impulsion start. Then, in Figure 5, Adam depicts such a perforating process for a laser Gaussian profile, with $2.4 a_{0c}$ diameter and intensity $2.45 I_0$. All these numerical evidences highlight pretty convincingly the relativistic crushing of the plasma critical surface (Fig. 6).

3 Fast electron generation and acceleration

Several mechanisms are thought to be simultaneously at work to produce and accelerate relativistic electrons in the MeV energy range [15].

Here, we shall emphasize the most conspicuous one, the ponderomotive force.

The target electron escapes the laser pulse reflected at critical density (see Fig. 7), with a kinetic energy equal to oscillating energy on one arch of laser pulse. It is then forwardly ejected through the Lorentz force $\mathbf{V} \times \mathbf{B}$.
More specifically, one might be asking for suitable processes explaining MeV electron energies in the given interactions.

According to Lawson-Woodward theorem [18]: no net energy transfer from EM wave to electrons possible if:
1. the laser fields are in vacuum;
2. the electron is relativistic;
3. no static E or B fields are present;
4. the region of interaction is infinite;
5. Nonlinear forces (ponderomotive) are absent.

However, we are violating 1, 2, 3, 4 and 5!

So, electrons interacting with EM wave in a plasma can break Lawson-Woodward theorem, thus allowing very energetic electrons to be generated.

One of the major physics issues to implement fast ignition is the generation and propagation of energetic hot electrons in high-density plasmas. Intensive 2D PIC simulations due to Adam et al. [17] demonstrate that parametric instabilities could help the relativistic electrons to penetrate indepth a dense target. Recently, the energetic hot electrons outgoing from plasmas were studied experimentally and theoretically [19–24]. Hot-electron energies up to 100 MeV were observed in laser-solid interactions at an intensity of 3×10^{20} W/cm2 using petawatt laser system at LLNL [25]. Malka and Miquel also studied relativistic electrons produced by interaction of relativistically intense laser pulses with solid targets [26]. The high energy of hot electrons was attributed to $\mathbf{J} \times \mathbf{B}$ acceleration mechanism [27]. On the other hand, hot electrons ingoing along the laser propagation direction, which is directly related with fast ignition, were also studied in detail [28,29]. Tatarkis et al. observed a plasma at the back surface of a thin foil. This was believed to be formed by a collimated electron beam passing through the foil [30]. A more direct experiment was carried out using a transparent glass target coated with an aluminum layer. An ionization track induced by a beam of energetic hot electrons was clearly observed through the target [31,32]. Norreys et al. observed a highly directional γ-ray beam with energies above 10 MeV in the direction nearly opposite to the target normal direction. This indicated the generation of a directional relativistic electron beam [33]. These experimental results imply that the hot-electrons could be collimated by self-generated magnetic fields. The generation of hot-electron jet and the pinching of magnetic fields were reproduced by particle-in-cell (PIC) simulations [34,35].

Many mechanisms can produce hot electrons. In the interaction of intense laser pulses with sharp solid-vacuum interface, the ponderomotive potential model and Brunel absorption model [36] play important roles. Other
mechanisms such as wake fields [37], parametric instabilities [38, 39], B-loop mechanism [40], and propagating wave [41] are effective when a large scale preplasma is formed before the arrival of the main laser-beam.

Magnetic field assisted particle acceleration (“B-loop” mechanism) relies essentially on electron gaining energy from EM wave similar to vacuum case, but due to the presence of the azimuthal B-field, electron is “dephased” in EM wave, and thus gains more energy than it otherwise would have.

Trapping and acceleration of the background electrons can result from the coupling of Raman backscattering to the wakefield (threshold much lower than even the cold 1-D wave breaking limit).

In order to trigger out efficiently the hot spots at the end of range of the laser produced relativistic electron beams (REB) through kJ of local energy deposit, one has to envision e-beams with pretty large number densities $n_b \sim 10^{22} \text{ cm}^{-3}$.

Obviously, the given REB have to be propagated charge- and current-neutralized to overcome the rather restrictive Alfven-Lawson limit [42] $I \leq I_{AL} = 17\beta \gamma \text{kAmp}$, when β and γ are the usual relativistic parameters in terms of overall REB velocity V_b. So, one expects a return current (Fig. 8) to compensate for the incoming REB one.
Fig. 9. Left column: J_z current density plotted in transverse (x,y) plane for times given, right column: corresponding space charge density, given for times $\omega pt = 1220$ (a, e), 200 (b, f), 300 (c, g), and 400 (d, h). Arrows mark spots of imploded ion cores (Honda et al., Ref. [44]).

The corresponding dynamic picture depicts an anisotropic velocity distribution. So, one could reasonably expect a strong transverse and electromagnetic interaction between the two counterstreaming currents leading to the well-known Weibel EM instability (WEI) [43]. Very recently, some authors have thus been inclined [44] to deduce from very heavy PIC simulations with quasi-particle number $\geq 10^8$ but in rather small simulation boxes $(4 \mu m \times 4 \mu m \times 8 \mu m)$ that WEI could very rapidly turn nonlinear. So, a highly destructive filamentation (for instance, Figs. 9 and 10) of the incoming REB could rapidly occur, thus preventing any further controlled propagation toward the DT compressed core.

Actually, it should be emphasized out that the gradient effects due to too close boundaries in the given simulation boxes may be describing a physics picture different from the one at stake, here.

To clear up those controversies, we considered REB propagation in a smooth target density gradient (Fig. 11) mimicking penetration in the outer layers of DT precompressed core. Then, we paid attention to the initial linear growth rate of WEI. Typically, we took REB particle energy $E_b = 1$ MeV with isotropic temperatures $T_b = 1$ keV and $T_p(target) = 100$ eV, respectively. Connecting plain linear growth with mode-mode coupling theory, we got profiles for WEI quasi-linear growth rate δ denoted as weakly turbulent.

Thus, one can check that although δ/ω_p significantly decreases with increasing target plasma density N_p, δ remains nearly constant (at best). So, linear WEI growth
rate still remains fast enough to give way to the disastrous nonlinear filamented behavior. To clear up those tantalizing issues, much more reliable PIC simulations are badly needed. New impressive CPU facilities are presently under way to meet these challenges. In particular, they should allow to work with a large number of quasi-particles/cell and widely spaced boundaries. Moreover, other very recent simulations by Ruhl et al. [45], seem to dwarf the importance of WEI. Other singularities, such as cavities and solitons, compatible with ponderomotive acceleration could well be monitoring the complexities of the REB plasma in FIS conditions.

This highly controversial situation has then led some authors (Logan [46] for instance) to propose to divide initial REB density into numerous smaller ones pertaining to a number of converging subbeams (Fig. 12), toward hot spot location. Then, separated laser spots can launch hot electrons independently while collective magnetic forces may help focus multiple electron beams to the hot spot.

An intriguing and related proposal due to Malkin and Fish [47] advocates the controlled taming of a fully developed Langmuirlike turbulence underlying the caviton-soliton nonlinearities. Then, one could expect stabilizing those collective modes through the strong density gradient in the outer layers while using them when fully developed in the density flat inner core to induce a well localized REB stopping therein.

4 Wedged (cone-angle) REB propagation

Although 3D simulations are not yet providing us with a convincing propagation pictures, experiment is hopefully presently providing inspiring guidance.

Up to now, most of REB-target experiments have been only REB interaction with solid matter or cold gas.

The very recent experiment by Kodama et al. [48] is the first to combine production of compressed matter in a laser-driven implosion with picosecond heating by a laser pulse timed to coincide with peak compression. This is a small-scale test of the fast-ignition concept and uses a small spherical shell of deuterated polystyrene to simulate the D-T ice. Because the target has no tritium, it produces D-D fusion instead of D-T fusion. The shell is formed around a hollow gold cone to provide an access path for the ignitor beam to the fuel, which is compressed to a diameter of 40 μm at 50 g cm$^{-3}$ (Fig. 13) [49].

Their first results are encouraging. The thermonuclear yield of neutrons from D-D fusion is increased tenfold by irradiation at peak compression with a short 60-joule laser pulse. This means that 1% of the temperature rise needed for ignition was achieved using only 0.1% of the theoretically required ignitor beam energy. They also note that the longer, 1200-joule laser pulse that drives fuel compression has to be increased to 2800 joule to achieve the same increase in neutron yield without the 60-joule short-pulse heating highlighting the efficiency of the
fast-ignition approach. Preliminary analysis suggests greater than 20% energy transfer efficiency from the short pulse laser to heating of the compressed cone, which is adequate for full-scale fast ignition.

This heating efficiency has been confirmed in the mean time by experiments using 1-petawatt, 500-joule ignition pulses [48], so the longer-term prospects for full-scale fast ignition look good. Stepping up to megajoule laser drivers, it might even lead to a 300-fold energy gain, and could initiate serious efforts worldwide to produce fusion energy by fast ignition. However, experience with other fusion energy projects should temper our enthusiasm for fast ignition. At such an early stage, this new approach to fusion energy should be still viewed as promising, but speculative, until much more work has been done. In the future a due attention would have to be given to any spurious mixing zone involving the cone material with the compressed DT. Apparently, the lateral cone does not spoil the implosion symmetry.

5 Hot spot production

Now, we stress the final stage of REB propagation in the compressed core. We assume that the e-beam has been able to make its way up to the highest density zone in Figure 10. So, we model the REB propagation in a cylindrical geometry.

The REB interaction physics contemplated here looks like a remake of a very similar one envisioned in the mid-seventies [50] for a REB direct driven compression. However, the present targets are at least five hundred times more dense than the former ones. In order to coordinate their proposal, Tabak et al. [8] advocate a 6 μm range for 1 MeV electrons fully stopped in 300 g/cm² DT fuel. Such a figure looks reasonable for igniting a hot spot much smaller than the surrounding dense compressed DT core. The REB energy range considered is fixed by the laser irradiance through the relationship

$$\frac{dE}{dx} = 2\pi n_p e^4 \left(\frac{1}{2\pi} \ln \frac{V}{\omega_p \lambda_D} \right)^2 \left(\frac{2}{\lambda_D} \right)^{1/2},$$

with $\tau_{\text{min}} = \text{ratio of projectile electron wavelength } \lambda_e$ to target Debye length λ_D, $\tau = \gamma - 1$ in terms of the usual Lorentz parameters $\beta = V/c$, $\gamma = (1 - \beta^2)^{-1/2}$, and the excitation of Langmuir collective modes [53].

$$\frac{dE}{dx} = 2\pi n_p e^4 \left(\frac{1}{2\pi} \ln \frac{V}{\omega_p \lambda_D} \right)^2 \left(\frac{2}{\lambda_D} \right)^{1/2},$$

in terms of the target electron plasma frequency ω_p.

We are entitled to restrict to a continuous slowing down approximation because large and sudden energy losses are likely to happen very rarely. This point is well documented by the fact that a bremsstrahlung contribution comparable to the above ones would request a beam energy $\sim 800/(Z+1)$ MeV much larger ($Z = 1$) than those considered here. Also, electron-position pair production remains totally negligible below 10 MeV. However, in contradistinction to the simpler ion stopping [54] case we have to give up the straight line approximation for the projectile trajectory. Due attention has now to be paid to the quasistatic and highly erratic motion of the relativistic electrons experiencing multiple scattering on target ions. Such a process is essentially quantified by the square average deflection per unit path length ($Z = 1$, $A = 2$) [55].

Putting together the stopping contributions (2) and (3) allows us to compute a continuous range for a 90% per cent energy loss of 1 MeV electrons, as $R = 35.66 \mu m$ for a stopping target with 300 g/cc and 5 keV. It should be noticed that the range in a hot target with classical electrons is shorter than the corresponding Debye length $\sim 5 \times 10^{-9}$ cm and the mean particle interdistances $\sim 1.35 \times 10^{-9}$ cm in a DT compressed at 300 g/cc and 5 keV temperature.

As a consequence, it is the target density which takes responsibility for the energy loss and multiple scattering processes which we consider now.

The ratio $n_b/n_p \leq 10^{-4}$ demonstrates that in spite of its huge current the REB should be taken dilute in the overcompressed target with a mean electron interdistance larger by a good order of magnitude compared to that in the target. The REB-target interaction is then reducible to that of a linear superposition of isolated charges. Focusing attention on the most significant stopping mechanisms, we include binary electron-electron collisions through a plasma-adapted Møller expression [52]

$$-\frac{dE}{dx} = 2\pi n_p e^4 \left(\frac{1}{2\pi} \ln \frac{V}{\omega_p \lambda_D} \right)^2 \left(\frac{2}{\lambda_D} \right)^{1/2},$$

on the free-streaming component in the region $R < 10^{-10}$ cm where $\lambda_e > \lambda_D$ (with $\lambda_D = 9 \times 10^{-10}$ cm for $R = 35.66 \mu m$ and $\omega_p = 5 \times 10^{17}$ Hz).

This huge current is expected to pinch the cone trajectory. Due attention has now to be paid to the standard Alfven-Lawson limit is easily overcome. Such enormous B_0 values could a priori be a concern for the REB-target interaction itself.

Fortunately, the resulting target electron Larmor radius $\sim 3.8 \times 10^{-8}$ cm still remains much larger than the corresponding Debye length $\sim 5 \times 10^{-9}$ cm and the mean particle interdistances $\sim 1.35 \times 10^{-9}$ cm in a DT compressed at 300 g/cc and 5 keV temperature.
This R value is comparable with the core extension σ.
So, we really need an efficient packing mechanism to wind
the projectile trajectories within a much smaller domain
in the compressed core. This winding process is easily
quantified by the maximum penetration depth l_0 of the
given REB.

The precise calculation of this parameter has been
for many years the hard core of that subfield of nuclear
and particle physics devoted to particle detection. In the
present context, we find it very useful to use a classical
result due to Hemmer and Farquahr [56] which is based
on stochastic arguments summarizing a great deal of pre-
vious efforts. So, considering a slab thickness containing
every projectile trajectory whatever their orientation with
respect to beam axis is, one gets the simple relationship

$$ R = l_0 + \frac{1}{2} l_0 \frac{\lambda}{\lambda_0} + \frac{1}{2} \frac{l_0^2}{\lambda^2}, $$

(4)

between the continuous wound range R and the maximum
penetration depth l_0.

Figure 14a features simultaneously R and l_0 for the
energy range $0.5 \leq T \ (\text{MeV}) \leq 15$. In order to qualify
the FIS as a coherent ignition scenario, we have also to
request a sufficiently short stopping time which allows for
an adequate hot spot extension highlighted by $4 \leq l_0 \leq
18\ (\mu\text{m})$.

The corresponding $t_{\text{stop}} \sim 10^{-13}$ s exhibited in Fig-
ure 14b seems compatible with further equilibration time
between hot electrons and thermonuclear ions in ignited
target.

Those results are indeed putting the interaction
physics of the FIS on serious grounds. However, other re-
lated issues such as the conversion efficiency of the laser
light into energetic REB have also to be positively ad-
dressed. Such concerns are motivating some authors [57]
to advocate an even more precompressed DT core. This
explains that we investigate in Figure 15, the target den-
sity dependence of the above results for a 1 MeV REB and
a target density between $300\ \text{g/cc}$ and $1000\ \text{g/cc}$.
Then, we really witness a drastic reduction of R, l_0 and t_{stop}.

On the other hand, we also proceeded to a system-
atric variation of the target temperature between 1 and
5 MeV. The above results are then left practically un-
changed. Large T variations remain below 2.5%.

The above relativistic stopping expressions (2–3) refer
to the interaction of a single electron projectile with the
target plasma. However, in view of the very large e-beam
density, the occurrence of dynamical inflight correlations
between electron projectiles should also be accounted for.
Recent investigations [58] demonstrate that even for pro-
jectile interdistances $n^2 \lambda D$ with $n \geq 10$ and λD, target
plasma Debye length, such an effect yields to a signifi-
cantly magnified energy loss for the e-beam. So, the local
energy deposit concept appears well-grounded and the ac-
tual REB range is likely to be shorter that the above slab
estimated l_0.

![Figure 14](image-url)

Fig. 14. (a) REB range R (\(\mu\text{m}\)) and maximum penetra-
tion depth l_0 (cm) in a 300 g/cc DT target at 5 keV and $0.5 \leq T \ (\text{MeV}) \leq 1.5$; (b) corresponding stopping time t_{stop}
[14].

6 Fast ignition

Keeping in mind the above REB range estimates for com-
plete stopping at highest density of supercompressed D-T,
both high density of supercompressed D-T, and fast ignition
parameters, to simplify the previous complex
pictures (Figs. 14–15) with the cylindrical-spherical inter-
action given in Figure 16.

A precompressed DT fuel, initially at uniform density ρ
(and free to expand into the surrounding vacuum), is hit
by a beam of particles with assigned range R (a free pa-
rameter in the simulations), uniform stopping power and
straight path, delivering energy to the plasma electrons
(see Fig. 16). The beam is parallel and cylindrically sym-
metric, with uniform intensity I_p, for $r \leq r_s$, constant
power W_p, and pulse duration t_p. (Here r is the radial
coordinate.)

Here we have a spherical fuel assembly, with initial ra-
radius r_s, such that $\rho r_s = 3.6\ \text{g/cm}^2$. One can however check
that the results are nearly independent on r_s as far as the
particle penetration depth and the beam radius are much
smaller than the sphere radius. When considering parti-
cles with penetration depth $R > 1.2\ \text{g/cm}^2$, one has better
The present model is a rough schematization of the interaction of the actual particle beam with the dense plasma: effects such as deflections, straggling, and Bragg peaks are neglected. While important for detailed target design, the above features are not expected to affect the results of the present investigation, where only integral features of the deposition process, and the influence of the range are of interest.

Atzeni [59] followed this approach and after an extensive parameters study based on a 2D radiation-hydrodynamics code (DUSED) he found that ignition occurs if the deposited beam energy, power and intensity simultaneously exceed thresholds values, E_{ig}, W_{ig}, and I_{ig}, respectively, which are are fitted by

$$E_{ig} = 140\left(\rho/100\text{ g/cm}^3\right)^{-1.85}\text{ kJ} \tag{5}$$
$$W_{ig} = 2.6 \times 10^{15}\left(\rho/100\text{ g/cm}^3\right)^{-1}\text{ W} \tag{6}$$
$$I_{ig} = 2.4 \times 10^{19}\left(\rho/100\text{ g/cm}^3\right)^{-0.95}\text{ W/cm}^2 \tag{7}$$

with $\rho = \rho_{c}$.

Those values are considerably larger than those initially proposed by Tabak et al. [8]. At density $\rho = 300\text{ g/cc}$, one has $E_{ig} = 18\text{ kJ}$ in equation (5) vs. $E_{ig} = 3\text{ kJ}$ given previously.

Atzeni [59] also determined the energy, power and intensity thresholds for ignition of a fuel at a density $\rho = 300\text{ g/cm}^3$, as a function of the penetration depth of the heating particles, of the radius of the beam (and hence of the heated spot), and of the pulse duration. Detailed results referring to the values of the range $R = 0.3$, 0.6, 1.2 g/cm^2 are illustrated in Figures 17 for E_{ig}.

The following trends are apparent:

1. For a given value of the range, the key pulse parameter is energy for short pulses and relatively small focal spots, it is power for long pulses and small spots and it is flux for large spots and long pulses. The characteristic length (spot radius, r_{ch}), discriminating the above regimes is well approximated by $\rho r_{ch} = 0.6\text{ g/cm}^2$, and is independent of the particle range. The analogous characteristic time, t_{ch}, instead, is a growing function of the range, being $t_{ch} \approx 20\text{ ps}$ for $R = 0.30\text{ g/cm}^2$, and $t_{ch} \approx 40\text{ ps}$ for $R = 1.2\text{ g/cm}^2$.

2. The minimum value of the ignition energy is about 13.5 kJ (and is achieved for range $R \leq 0.6\text{ g/cm}^2$, $\rho r_{ch} \approx 0.3\text{ g/cm}^2$ and $t_p \approx 10\text{ ps}$), but corresponds to rather high power ($W_p \approx 1.5 \times 10^{15}\text{ W}$) and intensity; ignition with $18-20\text{ kJ}$ is instead achieved in a relatively large portion of the parameter space, and for a wide interval of values of the range ($t_p \leq 20\text{ ps}$; $r_b \leq 20\mu\text{m}; R \leq 1.2\text{ g/cm}^2$) and with considerably smaller beam power (see below). Even for $R = 2\text{ g/cm}^2$ ignition can be achieved with 20 kJ of delivered beam energy.

3. The beam power required for ignition, W_{ig} is, for a given radius, a decreasing function of the pulse length, approaching a constant value for long pulses. For a given pulse length, W_{ig} is nearly independent on the
beam radius for $\rho r_b \leq 0.6 \text{ g/cm}^2$, and is a growing function of r_b at larger radius.

(4) The beam intensity for ignition, I_B, varies with the duration of the pulse in a manner analogous to the power, but has an opposite dependence with the spot size, being larger for smaller radius, and then saturating, approaching a minimum value for $\rho r_b \geq 1 \text{ g/cm}^2$.

(5) A most important feature, is the really weak dependence of the ignition energy (and of the other pulse parameters) on the particle range, in particular for relatively short pulses and relatively small focal spot.

7 Production of MeV protons

One of the most exciting results recently obtained in this area of research is the observation of very energetic beams of protons, generated during the interaction of ultraintense short pulses with solid targets. In a number of experiments, performed with different laser systems and in different interaction conditions, protons with energies up to several tens of MeV have been detected behind thin foils irradiated with high-intensity pulses (Clark et al. [60]; Maksinchuk et al. [61]; Snavely et al. [62]). In these experiments, it was seen that the particle beams are directed along the normal to the back surface of the target, and have a small angular aperture at the highest energies. As proton beams are observed even using targets which nominally do not contain hydrogen, protons are thought to originate from hydrocarbon impurities located on the target surfaces or from bulk contamination of the target. There has been a strong debate whether the source of the energetic protons is located at the front or at the back surface of the solid target. Arguments based on the angular distributions of the proton energy across the beam have been used by Clark et al. [60] to support the hypothesis of a proton source located at the front surface of the target. On the other hand, the fact that the proton beam is perpendicular to the target back surface (rather than collinear with the interaction beam) supports the hypothesis that the proton acceleration takes place at the back of the target (Snavely [62]). In this case, the protons would be accelerated by the enormous electric field (approximately megavolts/micron) set up by the fast electrons leaving the target (Hatchett et al. [63]; Wilks et al. [64]).

The particular properties of these beams (small source size, high degree of collimation, short duration, energy dependence on the target characteristics) make them of particular interest in view of possible applications. Among these, their use as the ignition trigger in the fast ignitor scheme (Roth et al. [65]) and as a probe in high-density matter investigations (Borghesi et al. [66]) have been proposed.

The protons were produced by focusing the CPA pulse onto 25 µm-thick Al foils, and detected using layers of radiographic film (RCF; McLaughlin et al. [67] and plastic tracks detectors (Enge, [68]) placed in a stack at the back of the target, typically at a distance of about 2 cm. It was found that the proton beams have high brightness, typically with 10^{12} protons with energy above 3 MeV per shot (for laser irradiance of the order of 5×10^{19} W cm$^{-2}$). As observed in previous experiments, the beams were highly directional, propagating along the normal to the back surface of the target with small angular divergence (about 15° for 10 MeV protons).

The energy deposited within each film layer can be extracted from the absolutely calibrated film. By doing this for each film layer and fitting an exponential energy dependence, an estimate of the proton energy spectrum and total energy can be extracted from the film data.

During the experiments, the source size of the proton beam was estimated using a penumbral edge method, setting an upper limit of 15–20 µm diameter for the source of 10 MeV protons. It is presently unclear whether the observed source is real or rather a virtual one (with the protons emitted from a larger area with finite angular divergence and spread). In any case, the measured source

Fig. 17. Minimum pulse energy for ignition, vs pulse duration, for DT fuel at $\rho = 300 \text{ g/cm}^3$ and different values of the beam radius r_B (see labels on the curves) and of the penetration depth R of the fast particles; (a) $R = 0.3 \text{ g/cm}^2$; (b) $R = 0.6 \text{ g/cm}^2$; (c) $R = 1.2 \text{ g/cm}^2$. Results for $R = 0.15 \text{ g/cm}^2$ (not shown) and small focal spot are close to those for $R = 0.3 \text{ g/cm}^2$ [59].
size is small enough to permit the implementation of point projection imaging schemes, and sets the spatial resolution of imaging applications.

A test was carried out to investigate the proton acceleration mechanism, and in particular its dependence on the scale length of the plasma at the back of the target (Mackinnon et al. [69]). This was done to confirm the assumption that the protons are electrostatically accelerated at the back surface of the target. To create a finite plasma scale length, a preformed plasma was created by focusing a 600-ps-duration laser pulse at \(\lambda = 0.527 \mu m \) onto the back surface of the foil with an \(f/10 \) lens. The heating pulse energy, focal spot, and relative timing were all controlled on a shot-to-shot basis. For most shots, the energy on target was 10-J within a focal spot of 300 \(\mu m \) (FWHM), and the heating pulse started 250 ps before the interaction pulse, thus giving a mean intensity on target of \(3 \times 10^{13} \text{ W cm}^{-2} \). As a matter of fact, the proton production was very different when the heating pulse was incident on the interaction pulse, and formed a plasma with a scale length at critical of the order of 20–50 \(\mu m \).

Confirmation that the proton signal was very much reduced in the preformed plasma case was obtained by etching one of the three Mylar layers between the first two RC film layers. There was a one to one correspondence between the track features in the etched Mylar and the RC data. For the unperturbed case, in each layer the track density within the proton beam was very high and the signal fell off very sharply at the edge region of the spot. In contrast, for the preformed plasma case, the track density is high only on the first Mylar layer and it drops off very rapidly to background levels before the second layer of RC film. From this we can infer that the energy cut-off is actually lower than 5–6 MeV. The same behavior was observed in recent measurements when much thicker targets (up to 250 \(\mu m \) thick) were used. Even in this case the protons beam disappeared completely when a small plasma (with scale length of a few tens of microns) was produced on the back of the target, as predicted by electrostatic acceleration in the Debye sheath at the back surface of the target (Hatchett et al. [63], Wilks et al. [64]).

It should be noticed that rear protons are likely to emerge with a comoving electron beam and with a very small emittance 0.006 \(\pi \text{ mm.mrad} \), i.e. a hundred time smaller than the usual linac one.

8 Fast ignition with protons

Many experimenters [60–63] have very recently confirmed that energetic protons (5–70 MeV) are dragged away from a rear surface of ultra-intense laser illuminated plastic foils. The concept of proton driven FIS [65] thus offers a way for circumventing the difficulties of ion acceleration, pulse compression, focusing, and transport. Moreover, it can be applied to both direct drive and indirect drive ICF geometries.

This concept for fast ignition using laser-accelerated protons is depicted in Figure 18. Multiple petawatt-class laser beams are focused onto a target which is attached to the hohlraum in an indirect drive ICF geometry. An intense beam of protons is accelerated from the rear, non-irradiated surface of the target, which is spherical in shape in order to ballistically focus these protons to a small spot.

In Figure 18 precompression is secured with the standard HIF scenario using two lateral converters. The given hohlraum might be as well triggered by lasers or Z-pinches.

A thin metal window in the hohlraum wall protects the rear surface of the proton target from preheat caused by the intense soft X-ray radiation which is generated in the hohlraum by the implosion driver. A vacuum gap between the proton target and the protective window of \(\sim 200 \mu m \) could be required to provide a sufficient distance for the proton acceleration and a buffer against the hydrodynamic expansion of the hohlraum entry window due to the heat deposited in it.

Extremely high proton currents can be focused ballistically into the hot spot without space-charge driven defocusing, because the protons are accelerated as a plasma with an accompanying electron cloud which provides space-charge neutralization. Once the protons penetrate the thin metal window, we assume that their space charge will be neutralized by the plasma within the hohlraum, confirmation of which requires further beam transport calculations. However, since the proton beam density is everywhere much lower than the hohlraum plasma density, this assumption appears reasonable and we consider proton beam defocusing effects from multiple scattering and emittance only.

The optimum proton beam size is set equal to the range in the compressed fuel, and the maximum proton pulse duration is determined by the expansion time of the hot spot, given by the hot spot size divided by the sound speed, \(r_0/c_s \).

Laser produced protons have a range appropriate to create a hot spot in deuterium-tritium (DT) fuel, can be transported for a distance of a few mm and focused to spots of 15 \(\mu m \) radius. The scheme they suggested then consists in a standard ICF hohlraum, where a capsule containing DT fuel is ablativey compressed by thermal radiation, and a properly shaped proton source placed just outside the hohlraum (see Fig. 18). At a time close to maximum compression of the fusion fuel, a bundle of ultra-intense laser beams is focused on this second target, which emits a burst of protons, directed towards the compressed fuel. Using standard range computations and the results of reference [59] concerning particle beam requirements for fast ignition, Roth et al. estimated that 7–10 kJ of 15–23 MeV protons, reaching the fuel in a 15–20 ps pulse and focused onto a spot of 15 \(\mu m \), are required to fast ignite the fuel compressed to a density of 400 g/cm\(^3\). (Energy, radius, and pulse duration scale with density as \(E_{18} \propto \rho^{-1.85} \); \(r_0 \propto \rho^{-1} \); \(\tau_\rho \propto \rho^{-0.85} \), respectively).

However, these results refer to an ideal particle beam (with range just fitted to the hot spot size and independent on temperature and density) interacting with a homogenous fuel sphere. In fact since protons are produced with a wide-energy spectrum [60,62,63], pulse power and length
will be a function of both spectrum and distance between source and compressed fuel.

Proton range is a function of both proton energy and plasma conditions. In addition, the compressed fuel will not be isochoric. A more complete analysis is therefore needed. A first step in this direction was taken up by Atzeni et al. [70].

They have showed that due to the range dependence on plasma temperature and power spread due to proton velocity dispersion, the minimum ignition energy (for a homogeneous fuel sphere) is larger than that estimated in reference [65]. A good fit to results referring to a simple proton energy distribution is

\[E_{\text{ig}} = 90 \left[d \text{ (mm)}^{0.7} / \rho/100 \text{ (g/cm}^3\text{)} \right]^{1.3} \text{kJ}. \]

Proton generation transport and focusing on target are crucial issues for such a new scheme. In particular, the very large currents involved may require neutralized propagation, with the fast protons accompanied by comoving electrons. One should then properly speak of a plasma beam, although the energy carriers would in any case be the fast protons.

It is indeed a fortunate experimental occurrence that the MeV protons produced from the rear of the target foil with a smallest emittance, are also propagating with comoving electrons providing charge- and current-neutralization. The authors of reference [70] use again 2D Lagrangian simulations [59].

Their code employs a three-temperature plasma model and includes a real-matter equation-of-state, appropriate opacities, collisional transport, nuclear reactions and transport of fusion products. Proton-plasma interaction is dealt with by standard binary collision theory using a model similar to those usually employed in ion beam driven ICF studies.

In this connection, it should be noticed that proton stopping through excitation of collective plasma modes should also be properly included. Actually, several groups are presently devoting a closer scrutin to this important issue.

Nonetheless, those preliminary calculations already provide a meaningful analysis for the scenario of proton driven fast ignition.

Atzeni et al. [70] thus obtain proton ranges as a function of target plasma temperature (Fig. 19). As shown in Figure 19, the range of multi-MeV proton is nearly constant at relatively low plasma temperature, then increases substantially as the DT temperature exceeds some threshold. This is easily understood by observing that the fast protons are slowed down by the plasma thermal electrons, and that the stopping power decreases as the relative velocity of the colliding particles increases. From Figure 19 we see that at plasma temperature \(T = 5-10 \text{ keV} \), protons with \(\varepsilon_p \geq 10 \text{ MeV} \) have range longer than the optimal value for fast ignition.

A related stopping calculation due to Roth et al. [65] makes use of the standard stopping model (SSM) [54] which also includes those plasma modes excitation. Required conditions for hot spot ignition feature \(\rho \sigma_0 = 0.6 \text{ g/cm}^2 \) at \(kT = 10-12 \text{ keV} \), with a compressed fuel density of \(\rho_0 = 300 \text{ g/cm}^3 \). A proton ignitor beam generated was considered from a target placed 220 \(\mu \text{m} \) outside of the hohlraum. After penetrating the wall it traverses the
Fig. 19. Range of protons with different initial energy ε_p in DT plasma at density $\rho = 400 \text{ g/cm}^3$ versus the plasma temperature T [70].

The second constraint on the usable range of initial proton energies is the temporal dispersion of the ignitor proton pulse, whose total duration must be short compared to the expansion time of the hot spot. For our point design fuel density, the minimum hot spot size is the α-particle range required to sustain burn (20 μm), and the maximum allowable pulse duration is 20 ps. The proton pulse duration is determined by both the intrinsic source duration and the temporal dispersion of the pulse due to the range of proton velocities and the path length from proton production target to the fuel. The acceleration mechanism provides an upper limit on the duration of the acceleration of <10 ps, due to the cooling time of the hot electrons in the plasma sheath which drives the proton expansion. In this example, the ignitor protons are generated 220 μm outside of the hohlraum wall and we assume a NIF-type hohlraum of diameter 5.5 mm. For protons between 15 and 23 MeV, the temporal spread of the proton pulse by velocity dispersion is <10 ps which, when convoluted with the intrinsic source duration, gives a total pulse duration of <20 ps.

The ignition energy that has to be delivered by the proton beam grows with the distance d between source and dense fuel. As a mean to reduce such a distance one could use conically guided spherical targets originally proposed for fast ignition by electrons (see Sect. 4).

In this connection, Temporal et al. [70] considered recently two quite different conical guiding systems characterized by the substantially different value of the angle β defining the spherical sector filled by the fusion target. In
one concept $\beta < \pi/2$. This scheme tries to merge the pos-
tive effect of convergence to the simplicity of one-sided
irradiation. In addition, it allows for easy access to the
compressed fuel, since fast ignitor particle beams do not
have to cross the corona. In the second concept, instead,$\beta > \pi/2$; ideally one would like to subtract from a sphere
the smallest cone still allowing for delivering fast parti-
cles at the center. The main issue for both schemes is fuel
compression, which requires both suitable irradiation ge-
ometry and limitation of boundary effects close to the cone
surface. It appears more critical for targets with $\beta \leq \pi/2$.

It is also assumed that conical guiding does not af-
significantly implosion dynamics so that the status of
the compressed fuel can be taken from the 1D simu-
lation. This assumption is supported by the experimental
results of Kodama et al. [48] and also by the simulations of
Hatchett et al. [51]. In particular, Kodama et al. pointed
out that the insertion of the cone reduces the compressed
density by about 20%–30% compared with full spherical
implosion.

Because of the reduced time-of-flight of the proton, the
duration of the power pulse is favorably shortened from
the 70 ps [full width at half maximum (FWHM)] of the
reference with $d = 4$ mm to about 8 ps in this case. A sec-
ond advantage follows from the easier access to the region
of highest plasma density. The beam energy for ignition
turns out to be 12–14 kJ for beams with $T_p = 3$–5 MeV.
A word of caution is needed here, since the power pulse dura-
tion due to velocity dispersion is now comparable with the
presumable duration of the proton beam emission. Ther-
monuclear burn of the fuel releases 246 MJ, corresponding
to about 50% of the yield of the corresponding spherical
capsule. This shows that the burn efficiency (fractional
burn) is practically the same as for the spherical capsule.
Temporal et al. [70] also consider the dependence of the
burn fraction and of the target gain on the cone aper-
ture β. Let E_{fu}/η_h be the energy needed to compress
the whole spherical capsule and $F_v(\beta) = [1 - \cos(\beta)]/2$
the volume of the conical shell relative to the spherical one.
If we assume that the efficiency η_h is independent of β,
we can write the target gain $F(\beta)$ as

$$G(\beta) = E_{\text{fus}}(\beta)/[F_v(\beta)E_w/\eta_h + E_{\text{ig}}/\eta_{FI}], \quad (8)$$

where $E_{\text{fus}}(\beta) = 340m_{\text{DT}}\phi(\beta)F_v(\beta)\text{MJ}$ is the fusion en-
ergy, $\phi(\beta)$ is the DT fractional burn-up and m_{DT} is the
fuel mass of the spherical capsule in mg. The yield of
the spherical capsule is $E_{\text{fus}}(\beta = \pi) = 488$ MJ. Taking
$E_w = 635$ kJ, $E_{\text{ig}} = 12$ kJ (i.e., assuming a very small
source-fuel distance), $\eta_h = 0.3$ and $\eta_{FI} = 0.12$, we esti-
mate the maximum gain $G_{\text{max}} = 220$.

Since we expect that $\phi(\beta)$ grows with β, it follows that
also G should monotonically increase with the angle β
to reach its maximum value $G(\pi)$ for $\beta = \pi$.

Concerning the cases with small values of β, it is worth
noting that they could allow to achieve substantial gain
at smaller values of the total invested energy.

Of course, the actual viability of conically guided tar-
gets rests on the possibility of achieving the same compres-
sions as in the spherical cases, and in limiting undesired
effects associated with the cone boundaries. These topics
deserve further numerical and experimental studies.

9 Implications of fast ignition (FI) for inertial
fusion energy power plants [71]

Fast ignition offers a step-change in the pursuit of inertial
fusion energy (IFE).

- Reduction in total driver energies, driver cost, and cost
 of electricity (COE) as well as reduction in radiation
damage rates appear feasible.

- Possibility to use advanced target also documents as
 follows:
 - reduce or eliminate need for breeding blankets
 - exceptional safety and environmental characteris-
 tics.

- Relaxation of target fabrication requirements may also
 be envisioned. Fast ignition is expected to open the pa-
 rameter space for innovation in chamber design (mate-
 rials and configuration) and power conversion system
 design.

Fast ignition could be used with a variety of target designs.

- By moving from central, hot-spot ignition to fast igni-
tion, the total driver energy falls from 3–5 MJ to less
 than 1 MJ.
- Even with added cost of ignition beam(s), FI might
 provide 30–40% reduction in capital cost.
- Expect similar reduction in COE.
- An attractive indirect driving scheme is thus featured
 in Figure 22. It highlights a two-sided geometry with
 the pellet compression driven from the right (here with
 a laser) and fast ignition coming from the left.

More specifically, Key et al. [72] have implemented above
constraints (see Sect. 6) in Figure 23, at the scale of the
two planned giant lasers LMJ (Bordeaux) and NIF (Liv-
emore).

These authors consider a fuel density of 200 g cm$^{-3}$
with 10% of the NIF beams adapted for chirped pulse
amplification (CPA) [73]. Conversion at 60% efficiency to
0.53 μm wavelength is assumed in order to help meet the
$I\lambda^2$ constraint, giving a total short pulse energy of
200 kJ. The beams would be focused to a clustered ar-
day of 25 μm diameter spots at 20 ps pulse duration for
200 g cm$^{-3}$ density; giving the $I\lambda^2$ value shown in Fig-
ure 1. It is further assumed that hole boring brings the
ignitor beams to within about 100 μm of the dense fuel
where there is 30% conversion to electrons. Energy trans-
fer by the electron beam to the ignition spark with self
induced magnetic collimation [73] is assumed to be 66%
efficient with a two fold increase in electron beam diame-
ter between the optical focal spot and the ignition spark.
Compression of the fuel is assumed to be with 8% hy-
dynamic efficiency typical of direct drive, and with a ra-
tio $\alpha = 2$ of internal energy to the Fermi degenerate
minimum. The gain is computed by specifying the fuel
density and varying the fuel mass. Summing the required
Fig. 21. Concept of conically guided target for fast ignition by laser accelerated protons: (a) target cross section; the fuel containing capsule is imploded by a suitable driver; (b) enlarged view of the central region around maximum fuel compression: at this time an ultraintense pulse is used to generate fast protons. The conical guide allows for placing the proton releasing target close to the compressed fuel (Atzeni et al. [70]).

Fig. 22. Fast ignition target concept showing driver (right) and ignitor (left) beams. In this concept, plasma blowoff is excluded from the ignitor laser path and the driver lasers are concentrated at one end of the chamber. A similar scheme could be operated with intense and heavy ion beams in lieu of the driving laser. In this case, the laser entrance hole should be closed.

primary laser energy delivered to ignitor beams and the laser energy needed for fuel compression gives the total laser energy input. The fusion burn output is calculated from the burn efficiency $\rho r/(\rho r + 7 \text{ g cm}^{-2})$ and the fuel mass. For example, if 1 MJ of laser energy is used to compress the fuel, the fuel mass is 4.1 mg with a diameter of 340 μm, the ρr is 3.4 g cm$^{-2}$ and the burn efficiency is 0.33. The gain i.e. ratio of burn yield to laser energy is, therefore 330.

It is necessary for obtaining high gain that the total laser driver energy be well above the ignition threshold and this sets a lower limit on the density as illustrated in Figure 23 because the threshold energy increases as $\rho^{-1.85}$. The upper density limit arises from $I\lambda^2$ in the focal spots, which increases approximately linearly with density as indicated in Figure 23. In this scenario there is an operating window centered at about 200 g cm$^{-3}$.

The higher gain obtained in fast ignition arises because we assume a high compression efficiency $\eta = 8\%$, characteristic of direct drive, a low adiabat ratio $\alpha = 2$ and a low density $\rho = 200 \text{ g cm}^{-3}$, where the energy used to compress the fuel dominates the total input energy and scales as $\eta \alpha r^2/\lambda^2$. A low fuel adiabat is easier to achieve in fast ignition because the fuel density and pressure are reduced and there is no need for a central hot spot with its associated sensitivity to hydro-instabilities. Lower value of ρ relative to direct drive is the primary source of the higher gain for FI shown in Figure 23.

This simple model has many limitations. The requirement in fast ignition research is to substantiate that the postulated behaviors can be obtained, in particular the efficient transfer of energy that if they can be obtained, then fast ignition has a unique capability for high gain of considerable potential importance for IFE.

High-yield D–T targets might then be affordable.

- In lieu of reducing the driver energy, one could choose to hold it constant and reach higher fusion yields.
- Repetition rates could be reduced from $\sim 5 \text{ Hz}$ to only 1-2 Hz.
- Wider range of available target yields increases chamber design flexibility.
- For example, at low repetition rates, chamber clearing might be able to rely upon gravity clearing rather than forced flow schemes with a large pumping power.
- Tritium-lean targets would operate at high areal densities ($\rho r \sim 10-20 \text{ g/cm}^2$) and have overall tritium percentages as low as 0.5% while managing a respectable gain and reducing significantly the burden on tritium inventory [74].
- Main fuel would be deuterium; sparkplug region, which the ignitor beam(s) would strike, would contain 20–50% tritium.
- Freed from need to keep blanket tritium breeding ratio above unity, one could select materials by other design criteria:
 - Vapor pressure (affects beam propagation).
 - Chemical compatibility.
Fig. 23. Calculated gain curves for laser driven ICF targets. Fast ignition plots are labeled with density, ignition spark driver energy and focal spot λ^2. V denotes pellet implosion velocity (cm/s) [72].

- Power conversion (higher temperature operation and/or direct conversion).
- Pumping power (important for liquid wall chambers).
- Coolant material abundance and cost.
- Safety and environment.

Fast ignition targets may be simpler and more robust.

- Since a central spark is not needed and shock waves need not propagate through the wall to the center, there is no problem with central mixing caused by a rough interior ice surface or with an asymmetric target.
- Might be able to ‘hard-freeze’ targets down to 4 K, simplifying storage and injection.
- Alternate fuels with reduced cryogenic requirements might be possible; For example, $\text{B}_2\text{D}_3\text{T}_3$ melts above liquid nitrogen temperatures.
- Proposed areas of research are target design, target fabrication and injection, blanket engineering, and power plant design and economics.

10 Frequently asked questions and conclusions

In the present overview, we have essentially stressed the basic ideas and concepts of the novel compression possibilities afforded by the fast ignition scenario (FIS) [8]. The latter allows for a highly promising decoupling of the compression and ignition processes. As a result, the rather stringent requirements put on symmetry and ignition thresholds in the usual central hot spot ignition may belavishly relaxed, as evidenced in Figure 23. We also emphasized the highly impressive experimental results achieved for the production of well collimated relativistic electron beams (REB) as well as the very interesting potential of the recently discovery of laser produced MeV protons.

It is nonetheless obvious that many hurdles still remain on the way to a successful inertial pellet compression combined to an efficient fast ignition we highlight a few of them now along side with very recent encouraging technological perspectives.

How realistic is the REB penetration scenario, from the critical surface down to hot spot? (cf. Fig. 11).

The most critical issues involve understanding the physics of energy transport between the ignitor laser beam and the ignition spark. The photon pulse has to deliver up to hundreds kilojoules of energy in ~ 10 picoseconds in a spot a few 10 s of microns across located in the dense fuel. The intensities involved accelerate electrons to relativistic energies and lead to relativistic self-focusing of the laser beam, and the time involved is sufficient for the plasma structure and laser beam to co-evolve; there is much novel physics in this regime. The targeted ignition spot has a density much higher than the (relativistically corrected) critical density for transmission of light, and the energy of the laser is converted near that critical density surface to a directed jet of high energy electrons. The resulting electron currents greatly exceed the Alfven limit and require return current cancellation. The resulting EM fields modify the global electron flow, which is also subject to small scale Weibel instability. All of these phenomena have to be understood in some detail for success in fast ignition.

How intense proton beams in the MeV energy range react to electromagnetic instabilities? Preliminary investigations seem to indicate that those beams are immune to the Weibel instability, in the linear and quasi-linear (weakly turbulent) regimes, at least.

Is it possible to increase the laser production rate of MeV protons? Experimentalists feel reasonably optimistic about this issue and claim to be able to rise the given rate
above 20 per cent, within a five years period, from now. Then, a proton induced FIS could be envisioned.

Does it make sense to expect much more energetic REB from PW lasers operating in the 10^{23}–10^{24} W/cm2 irradiance regime? Yes, it does, several groups are indeed presently active in this field. So intense REB with energies in the hundreds MeV might be considered. Then, substantial modifications to their transport scenarios, according to the suggestions of reference [47], could be of relevance. As far as the diversion of REB kinetic energy through plasma modes is concerned, the emphasis could then be switched from Weibel to Langmuir instabilities.

How deep is the present understanding of the stopping of intense charged particle beams through collective modes excited in an overdense target plasma with a strong density gradient?

A lot of theoretical as well as numerical insights have already been gathered in this area of endeavor. Numerical simulations of the nonlinear WEI have already been documented above. Here, we intend to stress that many Russian theory groups have produced analytic investigations of the highest quality (see for instance [75,76]) underlying some of the more illustrative PIC simulations, in particular those led by Pukhov [40,44] and Ruhl [34,45].

What is the present status of the hole boring process?

As far as present REB-cold target interaction experiments are concerned, it appears well documented. However, some PIC simulations of precompressed fuels have recently demonstrated that this compulsory predecessor of FIS does not persist for target layers with a density above $40 \, n_c$. These controversial results have thus led some authors [77] to question the whole fast ignition scenario and replace it with a volume ignition one which is intrinsically less efficient from the energy point of view.

This situation explains that many researchers in the field would select the wedged (cone angle) approach as the most appropriate for achieving a full (see Sect. 4) fledged FIS. The wedged procedure allows to shortcut most of the uncertainties attached to the REB propagation in the outer layers of the compressed DT core.

How reliable is the wedged approach?

Up to now, experiments performed by the British-Japanese team (Kodama et al. [48]) have confirmed every positive expectation of that scheme, albeit at a rather modest ignition energy level ($\sim 60 \, J$).

Moreover, the latter appears less demanding in symmetry request during the compression phase. Nonetheless, the spurious outputs due to a mixing zone between the cone heavy material with the fuel should be carefully investigated. Ongoing spectroscopic investigations of this issue should allow to settle positively the matter.

How to get efficiently and rapidly introduced to the proliferating literature on fast ignition? I hope that the present overview will efficiently contribute to that goal, the list of published proceedings of international workshops dedicated to this presently very hot topic is given in the reference [78–80].

In the near future, increased PW-laser facilities as well as still increasing CPU computer resources are expected to clear up many of the afore mentioned issues.

Up to now, FIS features the best promises of success for the whole inertial fusion energy program. It can be easily adapted to any possible compression driver: laser, heavy ion beams or Z-pinch and removes most of the extreme requirements demanded by the standard scenario based on central spot ignition.

References

C. Deutsch: Fast ignition schemes for inertial confinement fusion

113

43. E.S. Weibel, Phys. Rev. Lett. 2 (1959)
49. M.H. Key, Nature 412, 775 (2001)
57. M. Busquet, Chocs 13, 57 (1995)
59. S. Atzeni, Phys. Plasmas 6, 3316 (1999); A.R. Piriz, M.M. Sanchez, Phys. Plasmas 5, 4373 (1998) which predict ignition with 10 times less energy than S. Atzeni