Issue |
Eur. Phys. J. Appl. Phys.
Volume 58, Number 1, April 2012
|
|
---|---|---|
Article Number | 10804 | |
Number of page(s) | 9 | |
Section | Plasma, Discharges and Processes | |
DOI | https://doi.org/10.1051/epjap/2012110186 | |
Published online | 05 April 2012 |
https://doi.org/10.1051/epjap/2012110186
Nonlinear compressible magnetohydrodynamic flows modeling of a process ICP torch
1
Laboratoire d’Etudes et de Modélisation en Électrotechnique (LAMEL), Université de Jijel BP 98, Ouled Aissa, 18000 Jijel, Algeria
2
Laboratoire de Physique des Gaz et des Plasmas (LPGP), Université de Paris Sud, 91405 Orsay, France
a e-mail: ikhlefnabil@yahoo.fr; n_ikhlef@univ-jijel.dz
Received:
21
April
2011
Revised:
18
August
2011
Accepted:
9
March
2012
Published online:
5
April
2012
Magnetohydrodynamics (MHD) describes the physical behavior of inductively coupled plasma (ICP). The goal of this paper is to provide a physical understanding of a process ICP torch using a resistive MHD model. This includes a basic description and derivation of the fluid model. Inductive plasma is treated as a continuous, conducting fluid that satisfies the classical laws of motion and thermodynamics. This model combines fluid equations, similar to those used in fluid dynamics, with Maxwell’s equations. Steady fluid flow and temperature equations are simultaneously solved (direct method) using a finite elements method (FEM). The electromagnetic field equations are formulated in terms of potential vector with applied voltage source, so this model is physically more consistent, a more accurate and a faster simulation. The governing resistive MHD equations for an inductive plasma flow under local thermodynamic equilibrium (LTE) and laminar flow are presented, with appropriate boundary conditions. The model enabled to obtain the electromagnetic fields, temperature and flow velocity distributions also allows the determination of the electric parameters such as impedance of the plasma torch, total power, eddy losses, etc.
© EDP Sciences, 2012
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.